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The Standard Model of Particle Physics
The Standard Model describes the known forms of
matter and forces with only 17 elementary particles.
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But some big puzzles are beyond the Standard Model
What is Dark Matter? Why more Matter than Antimatter?

Quantum nature of gravity? . . .

Testing the Standard Model at the LHC in search of new particles
High-energy collisions of protons (14 TeV) produce huge amount of particles

→ measured in highly sophisticated detectors (ATLAS, CMS, etc.)
Experimental data compared to theoretical simulations
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The search for small deviations from the Standard Model makes experimental data and
theoretical simulations for a very wide range of processes at the highest precision crucial.

Scattering amplitudes in perturbation theory
Elementary building blocks: Feynman rules for propagation and interaction
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p2 , = −i/p
p2−m2, ∝ gs, ∝ gs, etc.

Compute amplitude of a scattering process from sum of Feynman diagrams, e.g.
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∼ 100% uncertainty
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︸ ︷︷ ︸
164 diagrams
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↓
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• Expansion in coupling constants, e.g. gs. Higher precision =̂ more loops
• Each loop: Integration over D-dimensional energy-momentum vector qi. In-

tegrals are computed in D = 4−2ε dimensions, where ε regularizes divergences.

Complexity grows strongly with number of loops and external
particles limiting analytical calculations
⇒ Automated numerical tools enable studies of many processes @ NLO
in a short time, e.g. OpenLoops 2 [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z. 2019].

• Numerical calculations are performed in integer dimensions.
⇒ Split loop integral numerators into 4-dim part N and (D − 4)-dim part Ñ .

OpenLoops – automated amplitude calculation @ NLO
Exploit factorisation of one-loop diagrams into universal building blocks
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(with external subtrees wi)
Denominators Di(q) = (q + pi)2 − m2
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Recursive construction of 4-dim
coefficients from the segments of the
cut-opened loop
[Cascioli, Maierhöfer, Pozzorini 2011;
Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z. 2019]
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Tensor integrals: On-the-fly reduction [Buccioni, Pozzorini, M.Z. 2017], external tools [Denner, Dittmaier, Hofer; van Hameren]

Restoration of (D − 4)-dim numerator parts together with renormalization procedure R
through universal rational counterterms [Ossola, Papadopoulos, Pittau 2008]
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⇒ Completely general and highly efficient algorithm and tool

Our approach @ NNLO
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Numerical construction of 4-dim tensor coefficients
Exploit factorisation into universal building blocks Kn ∈ {S

(i)
n (qi), V0,1(q1, q2)} in a new and completely general algorithm [Pozzorini, N.S., M.Z. 2022]

with recursion steps Nn(q1, q2) = Nn−1(q1, q2) · Kn

Highly efficient and fully implemented for QED and QCD corrections to the Standard Model ✓
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• Currently the bottle neck of NNLO automation ⇒ powerful new methods to be developed
• Step Ik → Ml uses integration-by-parts relations [Chetyrkin, Tkachov 1981], e.g. implemented in Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, F.L., Maierhöfer, Usovitsch 2020]

Restoration of (D − 4)-dim numerator parts via small set of universal two-loop rational terms [Lang, Pozzorini, Zhang, M.Z. 2020, 2020, 2021]

stemming from the interplay of Ñ with ultraviolet (UV) or infrared (IR) divergences.
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Rational terms of UV origin: Fully computed for QED and QCD corrections; IR origin: Currently under investigation
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Conclusions
Automated tools @ NLO have played a key role in the success of the LHC. Similar tools @ NNLO are highly desirable to meet the precision demands of
the next years. While there has been huge progress in this field, new methods still need to be developed by our group and others to reach this goal.


