

Group of Oxide Interface Physics: Magnetic and Transport Studies

SWISS NATIONAL SCIENCE FOUNDATION

Contact us if you are interested in a bachelor or master project:

- simon.joehr@uzh.ch
- marta.gibert@ifp.tuwien.ac.at

Simon Jöhr

Jonathan Spring

Marta Gibert

Stacking oxide layers in form of thin films or superlattices, creating interfaces, allows us to tune

https://www.physik.uzh.ch/ en/groups/gibert.html

Introduction: Why Oxide Interfaces?

Perovskite oxides have a large spectrum of properties emerging from strong correlations and interactions.

their functionalities and even generate new properties, opening a gate to novel applications.

Thin film

Building block

Superlattice

Tuning of functionalities

Methods: From Growth to Characterization

Off-axis RF magnetron sputtering

Information about the structural quality

Atomic Force Microscopy (AFM) Probe of the surface quality (new device

coming soon!)

Magnetometry (SQUID) Measurement of the

magnetic response

Transport Quick RT: A fast and easy way to measure the

resistivity (self-made)

NdNiO₃

Our Current Projects

Double Perovskite & Superlattices

6 Magnetic field (T)

100 150 200 250 300 350

Temperature (K)

Ferromagnetic properties of a 10 nm

film grown on SrTiO₃ substrate

 $T_C \sim 280 \text{ K}$

Magnetization (μ_B /

La₂NiMnO₆ is a ferromagnetic insulator with near room temperature transition.

Rock-salt ordering of the NiO₆ and MnO₆ octahedra leads to ferromagnetic superexchange.

Outlook

Superlattices of La₂NiMnO₆ and Nd₂NiMnO₆ are expected to be multiferroic (i.e. ferromagnetic and ferroelectric)

Unusual Behaviour in Chromates

SrCrO₃ combines a metallic and antiferromagnetic behaviour. This feature is

Optical Growth Monitoring

We explore the possibility to monitor the film growth in real time. In-situ polarized optical reflectivity represents a simple non-intrusive solution.

Work in Progress!

If you are interested, don't hesitate to ask for a lab-tour!