

Higgs Boson Transverse Momentum **Spectrum at the LHC**

Xuan Chen, Thomas Gehrmann, Alexander Karlberg, Matthias Kerner

Goal of precision studies of Higgs Boson

Constrain the Standard Model (SM) and discover physics beyond SM.

Higgs transverse momentum (pT) measurements at the LHC

- LHC Run III and HL-LHC expect to achieve $\pm 10\%$ accuracy.
- pT spectrum covering wide energy range constrains SM in different aspects.

Predictions of Higgs boson pT spectrum at the LHC

- The dominant Higgs boson production channel at the LHC is gluon fusion through a quark loop.
- Introduce effective fields (EFT) from SM (integrating out heavy quark loops)

to simplify Higgs-gluon couplings:

$$\mathscr{L}_{EFT} = -\frac{\lambda}{4} G^{\mu\nu} G_{\mu\nu} H$$

• **Right:** Sketch of the Higgs pT spectrum from the gluon fusion channel.

All order resummation at small pT								
 Unphysical contributions from singular log terms: 								
$\ln^{k}(m_{H}^{2}/p_{T}^{2})/p_{T}^{2}$								
 Soft and collinear radiations factorise from hard process. 								
 Cross check of singular log behaviour (red line in left): 								
$[d\sigma^F/dp_T^2 - d\sigma^S/dp_T^2] \xrightarrow{p_T \to 0} 0$								

Use renormalisation group to resume the singular terms.

• State-of-the-art precision is N³LL resummation of N³LO [1].

Left: Higgs pT spectrum from fixed order (F), singular (S) and non-singular (N = FO - S) contributions.

$lpha_{_{S}}$ counting	$\ln W(x_a, x_b, m_H, \overrightarrow{b}, \mu = b_0/b) \sim$						
α_s	$\ln^2(b^2m_H^2)$	$\ln(b^2 m_H^2)$	1				$rac{d\hat{\sigma}^{H}_{NLO}}{dp^{H}_{T}}$
α_s^2	$\ln^3(b^2m_H^2)$	$\ln^2(b^2m_H^2)$	$\ln(b^2 m_H^2)$	1			$rac{d\hat{\sigma}^{H}_{NNLO}}{dp^{H}_{T}}$
α_s^3	$\ln^4(b^2m_H^2)$	$\ln^3(b^2m_H^2)$	$\ln^2(b^2m_H^2)$	$\ln(b^2 m_H^2)$	1		$rac{d \hat{\sigma}^{H}_{N^{3}LC}}{d p^{H}_{T}}$
•••		•••			•••		
$lpha_s^k$	$\ln^{k+1}(b^2 m_H^2)$	$\ln^k(b^2m_H^2)$	$\ln^{k-1}(b^2 m_H^2)$	$\ln^{k-2}(b^2m_H^2)$		1	$rac{d \hat{\sigma}^{H}_{N^{k}LC}}{d p^{H}_{T}}$
					•••	•••	•••
Resum order	LL	NLL	NNLL	N3LL		$N^{k+1}LL$	
A expansion	A_1	A_2	<i>A</i> ₃	A_4		A_{k+2}	
B expansion		<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃		B_{k+1}	

Above: Perturbative expansion of α_s and its corresponding singular log terms in softcollinear-effective-field theory (SCET) [1].

Fixed order predictions at medium pT

- Use parton level event generator NNLOJET.
- Apply antenna subtraction to regulate NNLO infrared divergences.
- Higgs + jet production in EFT framework at NNLO:

NLO EFT

NNLO EFT

80

100

p_T[GeV]

60

Matching small and medium pT

- Additive matching NNLOJET \oplus SCET [1].
- Use profile function for smooth transition.
- Conservative theoretical uncertainty estimation
 - 11 combinations of scale variation
 - 6 profile functions for matching
 - Taking envelope of 66 combinations
- Theoretical uncertainty of Higgs pT spectrum at N³LL \oplus NNLO reduces to at most $\pm 10\%$.

Left: Higgs Boson pT spectrum below 200 GeV $\frac{1}{200}$ with N³LL resummation matched with NNLO.

NLO SM

Extension to high pT region and compare the full spectrum with LHC data

• EFT approach breaks down at large pT region (> 200 GeV) due to high energy flow in the quark loop.

160

140

120

• Need to consider the full SM gluon fusion to Higgs boson where only the second order contribution (NLO) in the perturbative expansion is known recently [2].

UZH Contact

Dr. Xuan Chen xuan.chen@uzh.ch Office: Y36 K74

00000,00000

LO EFT

References [1] X. Chen, T. Gehrmann et al., Precise QCD Description of the Higgs Boson Transverse Momentum Spectrum, arXiv:1805.00736 [hep-ph]. [2] S. P. Jones, M. Kerner et al., Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence Phys. Rev. Lett. 120 (2018) no.16, 162001

[3] The ATLAS collaboration, Measurements of Higgs Boson Properties in the Diphoton Decay Channel Using 80 fb⁻¹ of pp Collision Data at $\sqrt{s} = 13$ TeV with the ATLAS Detector, ATLAS-CONF=2018-028.