

Oxide Interface Physics: a new group at UZH

Marta Gibert

Why oxide thin films and interfaces?

Jonathan

Spring

Electronic correlations in **transition metal oxides** result in fascinating properties that are absent in semiconductors:

- □ Ferromagnetism
- □ High-T_c superconductivity
- Metal-to-insulator transitions
- Multiferroicity
- □ Charge transfer
- Orbital ordering

Merging oxides in different heterostructures allows to tune their functionalities and to find novel material properties

- Colossal magnetoresistance
- □ Jahn-Teller distortions
 - ...and many more

High resolution X-ray Diffraction (XRD)

Radio Frequency (RF) off-axis magnetron sputtering

Superconducting QUantum Interference **Device (SQUID)** magnetometry

-5

<u>ד</u> ∑ -1

X-ray Magnetic Circular Dichroism (XMCD)

Metal-to-insulator transitions

Ongoing and future directions

Growing superlattices of double perovskites that are predicted to be multiferroic

□ Improving the magnetic properties of **ultrathin** double perovskite thin films

Exploring superconductivity in hole-doped Nickelate-based heterostructures

• Following the oxide growth kinetics in **real time** using *in-situ* polarized optics