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 Storage of solar energy into chemical energy 

 Hydrogen as storable energy carrier 

 Oxygen as only side product 

 Non-polluting, cheap, and abundant materials 

 

Oxidation of Cu(111) Under h-BN via Intercalation 

• What we do: 

Fundamental research 

on innovative light absorber  

materials, catalysts and  

photosensitizers by means of 

Surface Science techniques. 

 

• What we want to know: 

Their electronic and 

morphological properties, how  

they interact with light and H2O. 

 

• And how: 

- X-ray photoelectron 

     spectroscopy and diffraction; 

- Electron diffraction; 

- Atomic force microscopy, 

     scanning tunneling  

     microscopy; 

- Time-resolved two-photon  

     photoemission. 
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About energy storage 

Electricity consumption (2016) 

58000 GWh* 

All batteries in the world (2016): 

Réseau sur le stockage 

électrochimique de l’énergie 

*Source: Swiss federal office of energy 
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Project Design Objective: 
• Prepare well-ordered h-BN monolayer on Cu(111) 

• Oxidize Cu(111) via intercalation of O2 through h-BN 

• Probe structure, catalytic activity, photoinduced charge 

carrier dynamics with a range of surface 

characterization techniques 

The vision is that… 
• The h-BN layer can act as a passivation layer  

o Reducing unwanted oxidation or poisoning 

o Enhancing the transfer of hot electrons to the surface oxide.  

• Attractive for water splitting, made from cheap materials, and 

potentially stable at reaction conditions.  

• Overall, we improve our understanding of how a weakly interacting 2D 

monolayer can affect electron transfer in a photocatalyst system. 

Motivation 
• Cuprous Oxides (Cu2O) are utilized for numerous catalysis applications: 

o Reforming of MeOH 

o CO oxidation 

• Promising photocathode for photoelectrochemical water splitting: 
 

But…unstable in aqueous solutions 

 

Hossain et al ., Science 

364 , 450 (2019) 

Cover Surface with Hexagonal Boron Nitride (h-BN) 

• Excellent thermal and chemical stability 

• Can exist in various crystal structures, including hexagonal 2D form 

• Enhance transfer of hot electrons to surface 
 

But…difficult to deposit h-BN on metal oxide surfaces 
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XAS 

X-ray Absorption Spectroscopy 
Probe electronic structure 

XPS 

X-ray Photoelectron Spectroscopy 
Probe chemical state information 

Ambient-Pressure experiments at SLS 

Wider experimental opportunities: 
• Experimental endstation for high pressure surface 

science: gas dosing and water exposure possible 

• Dip and pull experiments: can study interactions 

between surface and liquid layer on top 

• Possibility to follow electrochemical modification of 

surfaces: oxidation and reduction in situ 

 

Z. Novotny et al., Rev. Sci. Instrum. 91, 023103 (2020) 

Phenomena not observable in high vacuum:  
• Adsorption of formic acid (HCOOH) on TiO2(110): ordered adsorbate 

layer in vacuum 

• Commonly believed to adhere strongly, even in air 

• High pressure experiments show otherwise! LEED shows surface 

structure after water vapour exposure, characteristic peak absent in XPS 

 

 

 

 

 

 

 

 

• DFT calculations support newer, high pressure experimental results! 

The ordered structure of adsorbed HCOOH on TiO2(110) 

Onishi H. et al., Journal of Catalysis 146, 557-567 (1994) 

5 10-6 mbar 1 min 0.01mbar 5 min 0.01mbar 1 mbar 

Realistic experimental conditions: 
• Studies can approach more practical application conditions 

• Important step for photocatalysis applications 
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The laser lab: Electron dynamics 
Photoelectron spectroscopy with ultrafast lasers 

• Time-resolved two-photon photoemission (tr-2PPE): Femtosecond pump-

probe electron spectroscopy of unoccupied states 

• Fitting the time-dependent population curves to obtain information about 

the decay dynamics of excited states 

• Example: studying ultrafast energy relaxation and transfer of 

photoelectrons from Carbon Dots into the TiO2(110) substrate 

• Ecological, cheap and efficient photocatalyst for solar hydrogen generation 

and solar fuel generation 

Angle-resolved 2PPE spectrum of 

image potential states on Cu(111) 

Adjusting the femtosecond 

laser oscillator 

Creating a desired wavelength of laser light 

with optical parametric amplification (OPA) 

S. Xie et al., J. Mater. Chem. A 2, 16365 (2014) 

Formation of Ni-Ferrite on Fe3O4(001)   

As-grown  

0.8 ML Ni/Fe3O4(001) 

Experiment EDAC simulation 
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XPS (Mg Kα) - Ni2p3/2 

Low Coverage

O1s 

335 

290 

250 

200 

154 

118 

78 

RT 

335 

k
e

p
t c

o
n

sta
n

t 

T (°C) Fe2p3/2 Ni2p3/2 

R. Bliem et al., Science, 346,1215 (2014). 

Motivation 
Ni-ferrite NiFe2O4 surfaces have become attractive as a  

catalyst for photoelectrochemical water splitting due to their: 

o Strong activity for water oxidation 

o Chemical stability 

 

But...Ni metal is becoming scarce  
 

Grow ultrathin films of Ni ferrite on  

low-cost Fe3O4 surfaces 
 

High Coverage

Contact us: 

Temperature 

Dependent  

XPS (Mg Kα) 

Temperature Calibration 

Duty Cycle of AC Heating 


