Dark Matter Searches with Underground Experiments

Michelle Galloway University of Zurich

Unraveling the History of the Universe and Matter Evolution with Underground Physics Tokyo University of Science, 13 June 2022

Dark Matter Searches with Underground Experiments

Michelle Galloway University of Zurich

Unraveling the History of the Universe and Matter Evolution with Underground Physics Tokyo University of Science, 13 June 2022

Dark Matter

Abell 520, Chandra (x-ray green), optical (red, green) Hubble, DM core (blue) - unanchored

DM is not a single piece of data, but is evident throughout the history of the Universe from a variety of experimental techniques

All the observational data are from very different eras:

- CMB ~350,000 years ago
- Galaxy, Lyman-alpha observations
- Mass measurements from gravitational lensing
- Rotation curves measurements at smaller scales/masses
- BBN a completely orthogonal measurement to all the others.

Dark Matter

Direct Detection

Direct Detection

Searches for interactions between Standard Model particles and dark matter from the Milky Way halo.

TeV

Standard WIMPs (Weakly Interacting Massive Particles)

Scattering example: WIMPs (NR) $m_{\chi} = m_N = 100 \ GeV \cdot c^{-2}$ $v \approx 220 \text{ km s}^{-1} = 0.75 \times 10^{-3} c$ where v = mean WIMP velocity relative to target (stationary halo)

$$\langle E_R \rangle = E_0 = \frac{1}{2} m_\chi v^2$$

$$\langle E_R \rangle \approx 30 \text{ keV}$$

=> mean recoil energy deposited in a detector

WIMP masses in the range of 10 -1000 GeV c⁻² typically yield recoil energies of 1 - 100 keV_{NR}.

Direct Detection

Searches for interactions between Standard Model

Absorption example:

$$\sigma_{\rm ae} = \sigma_{\rm pe} \frac{g_{\rm ae}^2}{\beta} \frac{3E_{\rm a}^2}{16\pi\alpha m_{\rm e}^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

Expected event rates

Differential event rate

V. Chepel and H. Arau´jo, Journal of Instrumentation 8(04), R04001 (2013)

Expected event rates

Differential event rate

Annual modulation

$$\frac{dR}{dE_r}(E_r,t) \approx \frac{dR}{dE_r} \begin{bmatrix} 1 + \Delta(E_r)cos \frac{2\pi(t-t_0)}{T} \end{bmatrix}$$
Modulation
$$T = 1 \text{ year}$$
amplitude
$$T_0 \text{ is phase (max)}$$

V. Chepel and H. Arau´jo, Journal of Instrumentation 8(04), R04001 (2013)

~June 2)

K. Freese, M. Lisanti and C. Savage, Rev. Mod. Phys. 85, 1561 (2013)

Expected event rates

Differential event rate

Annual modulation

$$\frac{dR}{dE_r}(E_r,t) \approx \frac{dR}{dE_r} \begin{bmatrix} 1 + \Delta(E_r)cos \frac{2\pi(t-t_0)}{T} \end{bmatrix}$$
Modulation
$$T = 1 \text{ year}$$
amplitude
$$T_0 \text{ is phase (max)}$$

(+ Directional detection)

V. Chepel and H. Arau´jo, Journal of Instrumentation 8(04), R04001 (2013)

R. W. Schnee, Introduction to dark matter experiments, doi:10.1142/9789814327183 0014 (2011)

Interaction cross section vs. mass

Include cosmological and astrophysical constraints, interaction kinematics, detector effects

E_{low} tail of velocity distribution (minimum velocity to induce a recoil)

 $v_{min} \approx \sqrt{m_N E_R / (2m_\chi^2)}$

At high energies, recoil spectra ~ indep. of DM mass

 $v_{min} \approx \sqrt{E_R/(2m_N)}$

Detector dependencies:

target atom (and detectability of recoil energy) detector effects (threshold, efficiency, resolution)

Higher sensitivity:

total exposure is detector mass M_N times observation time (t)

 $T = M_N \times t [kg days]$

section [cm²] SI WIMP-nucleon cross

NR-WIMP cross section vs mass parameter space

Interaction cross section vs. mass

Include cosmological and astrophysical constraints, interaction kinematics, detector effects

E_{low} tail of velocity distribution (minimum velocity to induce a recoil)

 $v_{min} \approx \sqrt{m_N E_R / (2m_\chi^2)}$

At high energies, recoil spectra ~ indep. of DM mass

 $v_{min} \approx \sqrt{E_R/(2m_N)}$

Detector dependencies:

target atom (and detectability of recoil energy) detector effects (threshold, efficiency, resolution)

Higher sensitivity:

total exposure is detector mass M_N times observation time (t)

 $T = M_N \times t [kg days]$

section [cm²] SI WIMP-nucleon cross

NR-WIMP cross section vs mass parameter space

lower backgrounds

Background suppression

- **Reduce or eliminate:** Underground shielding, secondary shielding, purification and distillation
- Model and predict: Materials radioassay, Monte Carlo (GEANT4, ACTIVIA, other) simulations, other constraints (e.g. RGMS)
- Cut or discriminate: Fiducialization, active vetos, particle ID via e.g. quenching, pulse shape discrimination, etc.

Gator low-background counting facility underground at LNGS high purity germanium detector in cryostat (central cylinder)

Materials database (Persephone): https://www.radiopurity.org

Maximum likelihood fit to extract tritium background in germanium detector (CDMSlite)

> R. Agnese et al. (SuperCDMS Collaboration), Astropart. Phys., 104 (2019)

Light

Xe: XMASS Ar: DEAP-3600 CsI: KIMS Nal: ANAIS DAMA/LIBRA, COSINE, SABRE

Light

C₃F₈: PICO Ge: CDEX Si: DAMIC, SENSEI Ar, Ne: TREX-DM He:SF₆: CYGNUS Ag, Br, C: NEWSdm H, He, Ne: NEWS-G

CaWO₄: CRESST Nal: COSINUS

Xe: XMASS Ar: DEAP-3600 CsI: KIMS Nal: ANAIS DAMA/LIBRA, COSINE, SABRE

Light

Xe: LZ, PandaX-4T, XENONnT, DARWIN Ar: DarkSide-50, DarkSide-20k, ARGO

C₃F₈: PICO Ge: CDEX Si: DAMIC, SENSEI Ar, Ne: TREX-DM He:SF₆: CYGNUS Ag, Br, C: NEWSdm H, He, Ne: NEWS-G

Ge, Si:

SuperCDMS

EDELWEISS

Xe: XMASS Ar: DEAP-3600 CsI: KIMS Nal: ANAIS DAMA/LIBRA, COSINE, SABRE

CaWO₄: CRESST

Nal: COSINUS

Light

Noble liquids

Xe: LZ, PandaX-4T, XENONnT, DARWIN Ar: DarkSide-50, DarkSide-20k, ARGO

Cryogenic crystals

Heat

Ge, Si: SuperCDMS EDELWEISS

Charge

C₃F₈: PICO Ge: CDEX Si: DAMIC, SENSEI Ar, Ne: TREX-DM He:SF₆: CYGNUS Ag, Br, C: NEWSdm H, He, Ne: NEWS-G

lonisation only

WIMP direct detection landscape

P.A. Zyla et al. (Particle Data Group) (2020)

WIMP direct detection landscape

P.A. Zyla et al. (Particle Data Group) (2020)

Neutrino backgrounds

Fog on the horizon

O'Hare, Phys. Rev. Lett. 127 (2021) 251802

GeV to TeV DM masses

- High atomic number & high density (stopping power, self-shielding, position resolution)
- Can be easily liquified (-100 C) and purified
- Large detector masses feasible due to scalability
- Ar: pulse shape discrimination based on scintillation decay times
- Ar, Xe: Time Projection Chambers discriminate using light + charge
- May see market limits (Xe) and requires large amounts (Ar), stored underground

XMASS

DEAP-3600

XENON1T

LUX

DarkSide-50

PandaX-II

Example: XENON1T

- fiducialization: remove events from detector materials
- WIMPs would scatter only once in detector (remove multiple scatters)
- ~1 keV thresholds

WIMP Dark Matter search channel

Example: XENON1T

- fiducialization: remove events from detector materials
- WIMPs would scatter only once in detector (remove multiple scatters)
- ~1 keV thresholds

Nuclear Recoils (NR) (WIMPs, neutrons)

Electronic Recoils (ER)

(gammas, betas, new physics)

WIMP Dark Matter search channel

Example: XENON1T

- fiducialization: remove events from detector materials
- WIMPs would scatter only once in detector (remove multiple scatters)
- ~1 keV thresholds

WIMP Dark Matter search channel

< 100 events/(t/yr/keV_{ee})

Can also search for excess above known ER backgrounds.

Current and future experiments

Current and future experiments

PandaX-4T: 0.63 tonne yr (3.7

Noble liquid future includes helium

see Dan McKinsey talk tomorrow

Semiconductor cryogenic crystals

sub-GeV to GeV DM masses

- Temperatures ~mK allow for detection of small temperature increase; direct measure of energy deposition
- Simultaneous scintillation (CRESST TES) or ionisation (SuperCDMS- TES, EDELWEISS - NTD thermistors)
- Very low thresholds tens of eV
- Scaling up requires multiple small crystals

Ongoing and future

- CRESST-III: 30 eV threshold; best limits down to 160 MeV
- SuperCDMS relocated to SNOLAB; 30 kg Ge, Si targets to start science run soon.
- EDELWEISS testing TES sensors

CRESST

CaWO₄, Al₂O₃

EDELWEISS

Ge

Super-CDMS

Bolometric technique

Semiconductor cryogenic crystals

sub-GeV to GeV DM masses

- Temperatures ~mK allow for detection of small temperature increase; direct measure of energy deposition
- Simultaneous scintillation (CRESST TES) or ionisation (SuperCDMS- TES, EDELWEISS - NTD thermistors)
- Very low thresholds tens of eV
- Scaling up requires multiple small crystals

Ongoing and future

- CRESST-III: 30 eV threshold; best limits down to 160 MeV
- SuperCDMS relocated to SNOLAB; 30 kg Ge, Si targets to start science run soon.
- EDELWEISS testing TES sensors

CRESST

 $CaWO_{4,}\,AI_2O_3$

EDELWEISS

Ge

Ionisation-only

MeV to GeV DM masses

- Silicon charge-coupled devices (CCDs) low ionisation energy, low noise, pixellated, particle tracks for background reduction (DAMIC, SENSEI)
- DAMIC-M from 7 CCDs (SNOLAB) to 50 CCDs (MODANE); x50 reduction in background; commissioning ~2023
- SENSEI from 2 g to 100 g at SNOLAB

SENSEI Collab., Phys. Rev. Lett. **122**, 161801

XENON collab., arXiv:2112.12116v1 (2022)

Probing lower DM masses

WIMP-nucleon and WIMP-electron scattering

S2-only channel

Limit setting only; interpreted as nuclear recoils or electron recoils

Phys. Rev. Lett. 126 (2021) 091301

Probing lower DM masses

Kinetic mixing of dark photon vs mass

XENON100 Hochberg et al. perCDMS EDELWEISS-III XMASS SENSEI RG XENON100 HB An et al. SuperCDMS Soudan XENON1T 10^{2} 10-1 10^{0} 10^{1} m_V (keV/c²)

XENON1T excess

Monoenergetic peak fit 2.3 +/- 0.2 keV

SuperCDMS Collab., PHYSICAL REVIEW D 101, 052008 (2020)

WIMP landscape: past, present, future

Projections for current and future experiments

10⁻⁴¹cm² in ~1998 to few x 10⁻⁴⁷ cm² in ~2018

Figure: Rick Gaitskell, 2020

Spin-independent cross section upper limits at 60 GeV WIMP mass

- Dark matter evidence is abundant, but only observed indirectly via its gravitational interactions
- Over two decades of WIMP searches have covered more than 6 orders of magnitude in cross-section vs mass parameter space.
- Experiments driven by standard WIMP searches, have reached exceedingly low backgrounds, thus opening new detection channels.
- A new generation of multi-ton scale detectors are now taking science data, already with first results.
- The future requires complementarity and collaboration.
- An inevitable neutrino fog is on the horizon, but patience may bring clarity.

Michelle Galloway | University of Zurich UGAP2022 | Tokyo University of Science

COMA Cluster, NASA/JPL-Caltech/GSFC/SDSS

Form factors

Loss of coherence as larger momentum transfers probes smaller scales: leads to a suppression in the event rate for heavy WIMPs or nucleons

- Scattering amplitude: Born approximation
- Spin-independent scattering is coherent

XENON availability

Xenon in the Earth's atmosphere

Xenon is obtained from air, where it is present in extremely small amounts.

Kr and Xe extraction from the air requires multiple steps

⇒ Production of Kr and Xe is managed globally in order to maximize reliability of supply

- Electronics demand for both molecules is meant to continue until 2030
- Space demand for both molecules is booming due to recent Space developments and private investment.
- Long term supply can be affected by:
 - Geopolitical context (Russia? China?)
 - Energetic transition in some supplying countries may have a long-term impact on the krXe production

> Such demand provoked a shortage situation that is meant to continue over the next few years despite the different investments made by industrial players.

https://indico.in2p3.fr/event/20879/contributions/109397/attachments/ 70773/100454/AirLiquide_Gaffet_XeSAT%202022%20Workshop%20%281%29.pdf

XENON TPC R&D

Test e⁻ drift over 2.6 m (purification, high-voltage): U. Zurich (G-floor Assembly Hall)

- Detector, Xe target, background mitigation, photosensors, etc
- Two large-scale demonstrators (in z & in x-y) supported by ERC grants: demonstrate electron drift over 2.6 m, operate 2.6 m ø electrodes
- Demonstrators (Xenoscope, 2.6 m tall & Pancake, 2.6 m diam TPCs) in commissioning stage

Test electrodes with 2.6 m diameter: U. Freiburg

Bubble chambers

arXiv:1902.04031 PRD 100, 022001 (2019)

- bubble chamber: 52 kg C₃F₈
- excellent electron recoil and alpha rejection
- 1404-kg-day exposure at 2.45 keV threshold
- previous: 1167-kg-day exposure at 3.3 keV threshold
- larger fiducial volume
- most stringent SD WIMP-proton limit: 2.5e-41 cm² at 25 GeV/c²

Annual Modulation

Ha, Center for Underground Physics, IBS

ICHEP2018, Seoul, July 4-11

Figure 29: The ANAIS best-fit modulation amplitude result compared with the DAMA/LIBRA best-fit result for both recoil energy ranges considered by DAMA/LIBRA. Figure from Ref. [41].

