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Figure 3: Model of the metalorganic molecule 
Cobalt-Pyrphyrin. Synthesized on UZH. [3] 
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Figure 1: Working principle of a heterogeneous photoelectrochemical cell. On the anode water 
molecules are split into O2, protons and electrons. On the cathode protons are reduced to H2.  

Motivation: Sustainable energy generation from solar light 

Model System 

ü  Storage of solar energy in form of chemical bonds 
ü  Oxygen as only side product 
ü  Non-pollutive, cheap, and abundant materials  

Figure 4: Model of the crystal structure of Cu2O(111); 
surface consists of coordinatively saturated and 
unsaturated copper (blue) and oxygen (red) atoms. [1]
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Figure 2: Working principle of the cathode: 
(1) Photoabsorption in Cu2O generates free 
charge carriers; (2) Charge separation and 
electron injection into the Cobalt-Pyrphyrin 
molecule; (3) Reduction of the proton to 
hydrogen gas. 
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LEED+STM: Surface structure and adsorption geometry 
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Principle: Probing depth depends on the 
angle of the sample in respect to the detector 
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Figure 5: a) Energy level alignment of CoPyr on 
Cu2O(111). b) 2PPE spectrum of Cu2O(111) 
pumped with 3eV and probed with 6eV 
ultrashort laser pulse. c) Valence band spectrum 
of Cu2O(111) and CoPyr on Cu2O(111) [2].
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Figure 6: a) LEED images of different surface reconstructions of Cu2O(111) and model of the related surfaces. b) STM image of a 
low coverage of CoPyr on Cu2O(111) and LEED image show that there is no ordering of the molecule. [1] 

Figure 7: Principle of angle-
resolved XPS and band bending 
of Cu2O(111) yellow and CoPyr 
on Cu2O(111) blue: Downward 
band bending conserved by 
adsorbing CoPyr but shape 
changes. [2][4]
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Model system for a cathode (2) 
Figure 8: STM image 
and DFT model of a 
MoS2 cluster on 
Au(111) [5] 
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•  Direct band gap of 1.0 -1.2 eV 
•  High optical absorption coeff. [6] 

•  1D parallel-stacked ribbons 
occupied by saturated atoms à 
low recombination losses [7] 

  MoS2 on Sb2Se3: is 
band alignment 

suitable for HER?  

1st step: Sb2Se3 characterization.  
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Figure 11: Image conditions: 35 nm x 
50 nm, Vsample = 1.4 V,  Itunnel = 190 pA 
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Figure 9: 
Sb2Se3 
rystalline 
structure and 
unit cell  

a1= 11.8 Å 
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Figure 10: a) Experimental and simulated XPD pattern for Sb and Se 
3dcore levels. From the two sets of data, we can conclude the surface 
orientation is (100). b) LEED pattern obtained with Ee-= 35 eV. From the 
diffraction pattern and the crystal structure, the unit cell is located.  

2nd step: MoS2 growth   

UHV 


