

Investigating Model Electrodes for Photocatalytic Water Splitting with **Surface Science Techniques**

FNSNF

Lisa Grad, Roberta Totani, Mert Taşkin, Wolf-Dietrich Zabka, Nicolò Comini, Zbyněk Novotný, Matthias Hengsberger and Jürg Osterwalder

Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich

- \checkmark Non-pollutive, cheap, and abundant materials

molecule; (3) Reduction of the proton to hydrogen gas.

Figure 4: Model of the crystal structure of Cu₂O(111); surface consists of coordinatively saturated and unsaturated copper (blue) and oxygen (red) atoms. [1]

Molybdenum Disulfite on Antimony Selenide

Photoemission Experiments: Energy level alignment

low coverage of CoPyr on $Cu_2O(111)$ and LEED image show that there is no ordering of the molecule. [1]

References

[1] M. Hotz. Investigation of Adsorption Geometry and Electronic Structure of Cobalt-Pyrphyrin on Cu₂O(111) and $TiO_2(110)$. Master-thesis, University of Zurich, 2017.

[2] D. Leuenberger, W. D. Zabka, O. Shah, S. Schnidrig, B. Probst, R. Alberto, and J. Osterwalder. Atomically Resolved Band Bending Effects and Charge Transfer in a Photocatalytic p-n-Heterojunction. Nano Lett. 17, 11, 6620-6625.

[3] Y. Gurdal, S. Luber, J. Hutter, and M. Iannuzzi. Non-innocent adsorption of Copyrphyrin on rutile(110). Phys. Chem. Chem. Phys., 17:22846–22854, 2015.

[4] O. Shah. Electronic Level-Alignment and Band-Bending Effects in a Cobalt-Pyrphyrin/Cu₂O(111) Heterojunction for a Photocatalytic Water Reduction Cathode. Bachelor-thesis, University of Zurich, 2016.

[5] A. Bruix, H. Gøbel Füchtbauer, A. K. Tuxen, A. S. Walton, M. Andersen, S. Porsgaard, F. Besenbacher, B. Hammer and J. V. Lauritsen*. In Situ Detection of Active Edge Sites in Single-Layer MoS₂ Catalysts. ACS Nano, 9, 9, 9322-9330, 2015.

[6] Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, Z. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, and J. Tang, Solution-Processed Antimony Selenide Heterojunction Solar Cells. Adv. Energy Mater. 4, 1301846, 2014.

[7] K. Zeng, D.-J. Xue, J. Tang. Antimony Selenide Thin Film Solar Cells. Semicond. Sci. Technol. **31**, 063001, 2016. [8] R. Vadapoo, S. Krishnan, H. Hulusi, C. Marin. Electronic Structure of Antimony Selenide (Sb₂Se₃) grom GW calculations. Phys. Status Solidi B 248, 3, 2011.

[9] J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu. Band Offsets and Heterostructures of Two-Dimensional Semiconductors. App. Phys. Lett. 102, 012111, 2013.

Acknowledgments

We gratefully acknowledge financial support by University Research Priority Program Light to Chemical Energy Conversion (LightChEC) and the Swiss National Science Foundation (SNF).

Outlook Additional protection **Real Device** Model System layer for stability CoPyr TiO₂ CoPyr GaO Additional layer for Cu₂O(111) Cu₂O(111) electronic junction LI YILI YOLLIYILI YOLLI