Probing the zero field evolution of single atom magnets Patrick R. Forrester^{1,*}, François Patthey¹, Edgar Fernandes¹, Harald Brune¹, and Fabian D. Natterer^{1,2} <u>Institute of Physics (IPHYS), École polytechnique fédérale de Lausanne (EPFL), ²Physik-Institut, University of Zurich, ^{*}Current address: Physik-Institut, University of Zurich</u>

Motivation Ho is read/writeable single atom magnet

- Is Ho stable at zero field?
- What is its ground state?

Antiferromagnetic SP-STMConventional fabricationIn-plane SP

Unaccounted for flips

Increase number of retractions

- Flip rate increases
 when retractions are
 increased
- Excess flip events are not from time spent at zero field
- Excess flips from process of sweeping tip
- Crossing zero field at intermediate distance?
- Avoided level crossings?

- Stray field decays rapidly
- SP-STM without external field

Retraction Number

Conclusions

- Holmium is a stable magnet at zero field
- This will inform theory for determining ground state
- Exists spin flip mechanism at intermediate field values

