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WIMP	
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10	keV	order	nuclear	recoil	

Xe	

WIMP Detection on Earth
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If Weakly Interacting Massive Particles (WIMPs) have electroweak-scale interactions with 
Standard Model particles, terrestrial detection may be possible via 
elastic scattering off of target nuclei (Goodman and Witten, 1985).

Event rate approximation for 100 GeV WIMPs:

Necessitates high exposure (kg year), very low backgrounds and good discrimination!
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Xenon as WIMP Target
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WIMP interaction rates with 
different, complementary targets

     Chepel, Araujo, JINST	8		(2013)

Advantages of Xe as target:
• odd and even isotopes (~50/50); spin-

independent (SI) and spin-dependent (SD) 
couplings to WIMPs

• high mass number (A~131); SI cross section 
scales as A2

• Easily scaled to increase mass (exposure)
For low-backgrounds:

• low intrinsic radioactivity
• high density (~3 g/cm3) stops external gamma-

ray backgrounds
As detection medium:

• it scintillates, and is transparent to its own 
emission (~178 nm)

• high ionisation yield and dielectric medium (free 
electrons that can be used for detection)

         —> allows for two separate detection channels for 
                each interaction
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Dual-phase Time Projection Chamber (TPC) Concept
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Dolgoshein Lebedenko, Rodionov, 
JETP Letters 11:11 (1970)

Liquified noble gases as detection medium
• Particle interaction produces scintillation flash and 

free electrons
• An applied field between cathode (C) and gate (G) 

causes electrons to drift upwards
• A second field between gate and anode (A) can 

extract electron cloud\
•  into gas phase, amplified, collected and imaged 

(imaging tracks)
• the time difference between the scintillation and 

electron collection depends on the drift velocity of 
the electrons

        —-> the drift time gives the depth of interaction

TPC: A detector that uses a time-to-space projection of the drift coordinate 
to image particle interactions in a medium 
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Xenon Time Projection Chamber
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S2S1

S2S1
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Vertex Reconstruction/Fiducialization:
x-y spatial coordinate from pattern on 

top array of photosensors
z- depth of interaction from drift time

E
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Particle identification:
track length is different for Electronic 
Recoils (ER) than for Nuclear Recoils 
(NR) for the same energy deposition

     Aprile, et al. Phys.	Rev.	D		(2017)

Fiducial
volume

ER calibration data

6.6 keVnr 30.5 keVnr



Vistas on Detector Physics 2017M. Galloway, UZH

Particle Identification (PID)
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     Manzur, Phys. Rev. C 81 (2010)

• Neutrons, WIMPS (NR) yield denser tracks (higher dE/dx) as gamma, beta (ER), leads to 
higher recombination rate (S1) for the same energy deposition

• Charge (S2) and light (S1) distribution channels are anti-correlated (can be combined to 
improve energy resolution)

• The S2/S1  ratio increases with higher applied drift fields 

     Aprile, et al, Phys.	Rev.	B	76	(2007)
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Xenon-based Dark Matter Experiments 
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XMASS
(single-phase)
Kamioka, Japan
Total Xe: 835 kg
Fiducial: 100 kg
Photosensors: 642

LUX
South Dakota, US 
(SURF)
Total Xe: 350 kg
Fiducial: 100 kg
Photosensors: 122

PandaX-II
Jinping, China
(CJPL)
Total Xe: 580 kg
Fiducial: 362 kg
Photosensors: 110

XENON1T
Gran Sasso, Italy
(LNGS/INFN)
Total Xe: 3.2 ton
Fiducial: 1 ton
Photosensors: 248

     Aprile, et al. Phys.	Rev.	D		(2017)	
Aprile, et al. arXiv:1708.07051 (2017)
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XENON1T at LNGS
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TPC	

9.8	m	

10	m
	

Laboratori Nazionali del 
Gran Sasso (LNGS)

3600 m water equivalent
Muon reduction by factor 

of 106

Water Shield
~700 m3 H2O

muon, hadron 
background reduction

Cherenkov Detector
Tank instrumented with 84 

high-QE 8” PMTS
Active rejection through coincidence 

tagging
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The XENON1T TPC
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• 1x1 m: 2 tons LXe (3.2 t total)
• double-walled vacuum cryostat
• copper rings for uniform field
• low-activity, selected materials
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XENON1T: Photosensors
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Eur. Phys. J. C75, 11, 546 (2015)
JINST 8, P04026 (2013)
JINST 12, P01024 (2017)

PMTs
• 3”, bialkali window
• High QE ~34% @175 nm
• average gain ~5x106 @ 1500 V
• cryogenic, low-radioactivity

	
R11410	

Hamamatsu 
R11410

121 bottom 127 top

PMT arrays and reflectors
• bottom array: maximum light collection
• top array: radial position reconstruction
• diamond-polished  PTFE for high 

reflectivity in VUV
• The amount of light collected depends 

upon interaction position
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XENON1T: Applied Fields
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electric field simulations

electron lifetime

See next talk by Constanze Hasterok

S2 spatial corrections
• electric field non-uniformities 

(+ PTFE charge-up)
• position-dependent S2 

amplification (mesh warping)
• electron lifetime - loss due to 

electronegative impurities in 
the xenon
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XENON1T: First Science Run
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Science Run 0 Science Run 1

34.2 live days dark matter exposure
3.0 days 220Rn for low-energy electronic recoil band calibration
16.3 days 241AmBe for low-energy nuclear recoil calibration
3.3 days 83mKr: for spatial response correction

Geological interruption defined first science run;
Still running with more than 130 days exposure. Earthquake magnitude 5.5

Jan. 18, 2017
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Energy Resolution

14

Energy scale
The efficiency to detect light and charge are given by the primary 
and secondary scintillation gains, g1 and g2, where W is energy 
needed to produce one electron-ion pair in xenon (W = 13.7 eV)

Light and Charge Yield stable within 1%
internal source monitoring (131mXe, 83mKr) 

• Linear from keV to MeV
• light detection efficiency (12.5 ± 0.6)% (predicted 12.1%) 
• 96% charge extraction efficiency
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Calibrations
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Nuclear recoils: AmBe 

Electronic recoils: 220Rn 
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Phys. Rev. D 95, 72008 (2017)

• 228Th source
• 220Rn emanates 

into xenon gas
• builds to 212Pb 

(10.6 h): 2-30 keV
• ~1 week decay

• 241AmBe external source 
(belt system) emits 1-10 MeV 
neutrons

• neutron generator 
commissioned May 2017, 
peaks  2.2 and 2.7 MeV

• reduced calibration time 
from weeks to ~days                   

arXiv: 1705.04741

Blue: ER  
Red: NR
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Lowest background ever achieved in a 
dark matter detector!

Reduction Methods:
• materials radioassay & selection
• cryogenic distillation to remove Kr:
  natKr/Xe < 0.048·10-12 (<48 ppq)                                                                 
• Rn distillation (in-situ: 20% lower tests: >27x decrease 

in Xe100) : 222Rn 10 μBq/kg target concentration    
• future: active neutron veto!                                            

arXiv:1705.01828 (2017)
EPJ C 77, 275 (2017) 

arxiv:1702.06942 (2017)

Measured
(1.93±0.25) ×10–4 

events/kg/day/keVee

MC predictions 
(2.3±0.2) ×10–4 

events/kg/day/keVee

620!
Counts/(ROI�ton�yr)!

Backgrounds

(1,12	keVee)

(4,50	keVnr)

See next talk by Constanze Hasterok

Electronic Recoil 

Nuclear Recoil 
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Total Background
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Background & Signal Rates Total NR median -2σ
Electronic recoils (ER) 62 ± 8 0.26 (+0.11)(-0.07)

Radiogenic neutrons (n) 0.05 ± 0.01 0.02
CNNS (𝛎) 0.02 0.01

Accidental coincidences (acc) 0.22 ± 0.01 0.06
Wall leakage (wall) 0.52 ± 0.32 0.01
Anomalous (anom) 0.09 (+0.12)(-0.06) 0.01 ± 0.01
Total background 63 ± 8 0.36 (+0.11)(-0.07)

50 GeV/c2, 10-46 cm2 WIMP (NR) 1.66 ± 0.01 0.82 ± 0.06

Background Model
• ER and NR spectral shapes derived 

from models fitted to calibration data
• NR energy conversion is based on the 

model and parametrisation from 
simulation (NEST)

• background expectations are data-
driven, derived from control samples

                                            



Vistas on Detector Physics 2017M. Galloway, UZH

Event Selection
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Nuclear recoil detection efficiency
Signal reconstruction algorithms tuned with MC
• modeled light propagation and detector 

electronics (noise)
• validated S1/S2 waveforms

Selections
• WIMPs are expected as low-energy, single scatters
• reject events with uncorrelated signals before main 

S2 & events after a high-energy event
• S2 width and PMT hit patterns must be consistent 

with reconstructed vertex

Cut Events remaining
All (cS1 < 200 PE) 128144
Selections 48955
1 t Fiducial volume 180
S1 range (3 < cS1 < 70) 63

1042 kg
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First Results
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Results consistent with null hypothesis
• WIMP region blinded until fiducial mass and event selections were finalized
• Extended unbinned profile likelihood analysis for statistical interpretation  

      ER/NR shape parameters from calibration fits   
• Standard isothermal WIMP halo model + Helm form factor
• No significant excess was observed above the expected background

Strongest exclusion limit for spin-independent WIMPs at 35 GeV/c2 of 7.7×10-47 cm2

     Aprile, et al. Phys.	Rev.	D		(2017)
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First Results
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(c) Dark matter search
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Results consistent with null hypothesis
• WIMP region blinded until fiducial mass and event selections were finalized
• Extended unbinned profile likelihood analysis for statistical interpretation  

      ER/NR shape parameters from calibration fits   
• Standard isothermal WIMP halo model + Helm form factor
• No significant excess was observed above the expected background

Still strongest exclusion limit for spin-independent WIMPs at 35 GeV/c2 of 7.7×10-47 cm2

     Aprile, et al. Phys.	Rev.	D		(2017)
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The XENON (to DARWIN) Project
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XENON10
Total Xe: 25 kg
Target: 14 kg
Fiducial: 5.4 kg
Limit: ~10-43 [cm2]

XENON100
Total Xe: 162 kg
Target: 62 kg
Fiducial: 34/48 kg
Limit: ~10-45 [cm2]

XENON1T
Total Xe: 3.2 ton
Target: 2 ton
Fiducial: 1 ton
Limit: ~10-47 [cm2]

XENONnT
Total Xe: ~8 ton
Target: ~6.5 ton
Fiducial: ~5 ton
Limit: ~10-48 [cm2]

DARWIN
Total Xe: ~50 ton
Target: ~40 ton
Fiducial: ~30 ton
Limit: ~10-49 [cm2]

-> Sensitivity improves with exposure (mass, Tobs), lower backgrounds, and improved PID
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Outlook
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• More parameter space to be covered by future WIMP searches (XENONnT, LZ, DARWIN)
• Several challenges ahead as we scale up the dual-phase TPC:

increase sensitivity to lower-mass WIMPs (lower threshold, neutrino background)
technical challenges (larger electrodes, field nonuniformities, photosensor optimization) 
high purity of xenon needed to drift 

          electrons over longer drift lengths
low backgrounds - neutron rejection 

         capability through an active veto
• XENON1T next results coming very soon!

XENONnT

Spin-independent WIMP-nucleon parameter space: 
exclusion limits and expectations from liquid 

xenon-based experiments 



Vistas on Detector Physics 2017M. Galloway, UZH 23

Thank you for your attention!

Questions?
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backup

24
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Key Points
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• Dual-phase TPCs use both prompt 
scintillation and extracted charge from 
an interaction with liquid xenon to 
look for WIMPs.

• By this method, the particle interaction 
location can be deduced and used a 
tool for discrimination.

• The difference in track length (-dE/dx) 
forms the basis to distinguish signal 
from background, and is preserved by 
the charge-to-light ratio.

• Detection sensitivity improves upon 
exposure (target mass, time), and the 
ability to minimize and discriminate 
background interactions

Dual-phase Time Projection Chamber (TPC)

S1 
(light)

S2 
(charge)

Eextraction

Edrift

electron 
drift time

electron 
drift time

time
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XENONnT
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New	TPC	and	inner	cryostat	with	

increased	linear	dimensions	 Scaled	XENON1T	design		
	significantly	reduced	time	

	needed	for	design,	construction,	

	and	commissioning	(XENON1T	

	experience!).	

XENONnT	XENON1T	

1.37	m	

1.37	m
	

0.95	m	

0.96	m
	

Materials		
	sources	of	clean	materials	and	

	expected	backgrounds	known	

	based	on	XENON1T.	

Xenon	Gas	
	7.25	t	needed	(7.5	t	inc.	gas)	

	More	than	50%	in	place:	3.7	t	in	

	XENON1T,	acquisition	ongoing.	
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DARWIN
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DARk matter Wimp search with liquid xenoN

DARWIN
σSI ~ 10-49 cm2
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Summary and Outlook
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XENON1T is currently the most sensitive direct dark matter search experiment
• The detector has the lowest background ever achieved
• Results with 34.2 live days are now published
• An additional > 85 days of data already acquired
• A fast upgrade to XENONnT is planned, using most of the                         

existing infrastructure.

XENONnT: 2019-2023
144 cm drift TPC

~8000 kg
Projected (2023)
σSI = 1.6 x 10-48 cm2
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XENON1T TPC
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Optical fibers

Diving BellLevelmeters

LXe level stability: (2.5 ± 0.2) mm
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31

Gate (ground) 

Top screening mesh -1.5 kV 

Anode 4-5 kV 

Bottom screening mesh 
-1.5 kV 

Cathode -12 kV 
(Science Run 0) 
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Interactions in Noble Liquids
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•  An energetic particle loses energy through:
➡  inelastic interactions with electrons in the medium (electronic stopping)

➡ elastic collisions with nuclei (nuclear stopping)

•  Electrons, gamma rays and fast ions lose most of their energy through electronic stopping
•  Nuclear recoils lose a considerable fraction of their energy through nuclear stopping

Important Concepts:
à Deposited energy goes into scintillation (luminescence), ionization (free electrons), and sub-

excitation electrons

à Linear Energy Transfer (LET) is the energy loss (or transfer) per unit path length: dE/dx in 
typical units [MeV/cm], also referred to as stopping power, is different depending upon 
interacting particle

à Quenching in scintillators generally refers to reduced light output, i.e. lower scintillation 
efficiency. The latter is described by a relative scintillation efficiency referred to as “L 
effective” (Leff). Can also refer to reduced ionization efficiency.
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Energy Reconstruction
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							S1											SER	
				_____________					________	

			LY	� Leff				SNR	
ENR	=	

Energy	of	nuclear	recoils	

Signal	in	#	photoelectrons	(p.e.)	

Light	yield:	average	#	collected		p.e./keVee	

Relative	scintillation	efficiency	
(NR	yield	/	ER	yield)	

ER	quenching	from	field	

NR	quenching	from	field	

ENR	=	S2	/	(Qy	� g)		

Signal	in	#	photoelectrons	(p.e.)	

Ionization	yield	(#	of	e-/keV)	

Field	dependency	+	
extraction	efficiency	

…one	needs	to	know	LY,	Leff	and	Qy	
(all	functions	of	ENR)		

within	region	of	interest.	

To	reconstruct	nuclear	recoil	energy	from	S1	and	S2	…
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Energy Resolution
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Energy scale (example: XENON1T)
• linear from keV to MeV using known calibration sources (83mKr, 129m,131mXe, 60Co) 
• g1 = 0.1442 ± 0.0068 (sys) PE/photon
• light detection efficiency (12.5 ± 0.6)%,    Monte Carlo prediction 12.1% 
• g2= ~100% charge extraction

     Aprile, et al. Phys.	Rev.	D		(2017)      Aprile, et al, Phys.	Rev.	B	76	(2007)
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Yields in Noble Liquids
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•  The average energy loss in ionization is 
slightly larger than the ionization potential or 
the gap energy, because it includes multiple 
ionization processes

•  The effect of sub-excitation electrons can 
be absorbed into a higher value for the work 
function

•  as a result, the ratio of the W-value (= 
average energy required to produce an 
electron-ion pair) to the ionization potential 
or gap energy = 1.6 - 1.7

- W-value liquid phase < W-value gaseous phase

- W-value in Xe < W-value in Ar, Kr (& Ne)



=> the ionization yield is highest in liquid xenon 
(of all noble liquids)
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Light and Charge Yields

Low-energy (0.7–74 keV) nuclear recoil calibration of the LUX dark matter experiment 
using D-D neutron scattering kinematics, Akerib, et al., arXiv:1608.05381v1, 18 Aug 2016

36
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Infrastructure

37

All critical detector parameters must be kept stable:
• LXe temp: (177.08 ± 0.04) K
• GXe pressure:(1.934 ± 0.001) bar
• LXe level: (2.5 ± 0.2) mm

ReStoX	
Cryostat	

Krypton		
Distillation	Column	

Cryogenic	
pipe	

Purification	system	
Cryogenic	system	


