
Physik-Institut

Programmieren in C++
FS 2023

Lecture 3: Data processing in C/C++

1 Introduction to data processing

Up until now, we have been learning how to use some the very basic tools available to create
a program. Today we will focus on how to build programs process and analyse data. We will
however stay with simple small sets of data which will fit in ”stack” and also only operate
using RAM.
Now that we know how to use if statements and for loops, we need to go through how to use
them to process data. Today’s session will cover linear search and the escape conditions from
within a loop and switch cases.

2 Linear search

The term ”linear search” is dedicated to searching linearly throughout a set of data. A linear
search looks at each and every element in a given set of data. A simplest case is when we are
searching for a match of a target value linearly.

2.1 Match

The following is one of the simplest examples using a for loop:

1 int some_integers[13] = {1,2,3,4,5,6,7,8,9,10,11,12,13};

2 int target = 10;

3 int target_index;

4 for (int i = 0; i < 13; i++){

5 if (some_integers[i]==target){

6 cout<<"The target is found and it has the index

"<<i<<endl;↪→

7 target_index=i;

8 }

9 }

The above is obviously terribly optimized and has a lot of room for improvement. Furthermore,
it becomes useless as soon as there are more than one element in the array that has the same
target value.

1 int some_integers[14] = {1,2,3,4,5,6,7,8,9,10,11,12,13,10};

2 int target = 10;

3 int target_index;

4 for (int i = 0; i < 14; i++){

5 if (some_integers[i]==target){

6 cout<<"The target is found and it has the index

"<<i<<endl;↪→

7 target_index=i;

8 }

9 }

Programmieren in C++ Lecture 3: Data processing in C/C++

The above will let you know where the target values are but it will only save one index. We
can fix this rather easily by making the target index to be an array or vector. In this case, a
vector is a better choice since we don’t know how many values in the array have the target
value.

1 //linear.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5

6 using namespace std;

7 int main(int argc,char *argv[]){//Main begins

8 //Variable declaration

9 int some_integers[14] = {1,2,3,4,5,6,7,8,9,10,11,12,13,10};

10 int target = 10;

11 vector<int> target_index;

12

13 for (int i = 0; i < 14; i++){//Linear search begins

14 if (some_integers[i]==target){//Target found if statement

begins↪→

15 cout<<"The target is found and it has the index

"<<i<<endl;↪→

16 target_index.push_back(i);

17 }//Target found if statement ends

18 }//Linear search ends

19

20 //Check to make sure that all of the indices have been saved

properly.↪→

21 for (int i : target_index){//Checking for loop starts

22 cout<<i<<endl;

23 }//Checking for loop ends

24

25 return 0;

26 }//Main Ends

The is not limited to integers. The above can be used for searching for matches in strings,
characters, and any kind of property that can be programmed in. For example if you have an
array of strings with what kind of pet you have at home, you can search for how many people
and who has a ”dog”

1 //linear2.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5

6 using namespace std;

7 int main(int argc,char *argv[]){//Main begins

8 //Variable declaration

9 string owner[14] =

{"Bob","Donald","Alice","Elodie","Chris","Johannes",↪→

10 "Roland","Micael","Ben","Ashley","Paul","Steven","Peter","Alvaro"};

11 string pets[14] =

{"dog","cat","lion","dog","bird","turtle","hamster",↪→

12 "dog","guinea pig","pig","fish","dog","rat","cat"};

2 LINEAR SEARCH 2

Programmieren in C++ Lecture 3: Data processing in C/C++

13 string target = "dog";

14 vector<int> target_index;

15

16 for (int i = 0; i < 14; i++){//Linear search begins

17 if (pets[i]==target){//Target found if statement begins

18 cout<<"The "<<target<<" is found and it has the

index "<<i<<endl;↪→

19 target_index.push_back(i);

20 }//Target found if statement ends

21 }//Linear search ends

22

23 //See who owns a dog

24 for (int i : target_index){//Checking for loop starts

25 cout<<owner[i]<<" has a "<<target<<endl;

26 }//Checking for loop ends

27

28 return 0;

29 }//Main Ends

2.2 Minimum and maximum

There are other types of linear searches. Following is an example of linear search for the
maximum and minimum value in a given array. Inspect the following code:

1 //minmax.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5

6 using namespace std;

7 int main(int argc,char *argv[]){//Main begins

8 //Variable declaration

9 vector<int> numbers={1,2,3,54,1,532,14,3,14,31,4,321,

10 5,35,21,5,3215,324,324,321,4,3214,321,43,14,32,14,32,

11 14,32,41,32,432,1,432,14,321,43,24,321,4,3214,32,431,35,

12 324321,161,6,17,34121,7,78,53,45,24,-3143,35,432,65,437,321};

13 int max=-99999;

14 int min=99999;

15 vector<int> target_index;

16

17 for (int value : numbers){//Linear search begins

18 if (value > max){//max if statement begins

19 max=value;

20 }//max found if statement ends

21

22 if (value < min){//max if statement begins

23 min=value;

24 }//max found if statement ends

25

26 }//Linear search ends

27 cout<<"max is: "<<max<<endl;

28 cout<<"min is: "<<min<<endl;

29

2 LINEAR SEARCH 3

Programmieren in C++ Lecture 3: Data processing in C/C++

30 return 0;

31 }//Main Ends

The output should be the following.

max is: 324321

min is: -3143

Note that the min and max are initialized to 999999 and -999999 respectively before the linear.
This is because when you are performing a linear search for minimum and maximum you the
computer can only achieve that by comparing the current value to the reference value.
Since in the beginning you do not know how big the maximum value is, it is best to give it a
very low reference number such as -999999. Similarly, since you do not know in the beginning
how small the minimum value is, it is best to give it a large value such as 999999.
Here’s another example:

1 //rand_minmax.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 using namespace std;

6 int main(int argc,char *argv[]){//Main begins

7 //Define the threshold for the random number generation.

8 const int rand_threshold=999999;//constant integers cannot be

changed once declared.↪→

9 vector<int> numbers; //empty numbers vector

10 int sign_generator=1; //a sign generator to assign + or -

11 for (int i=0;i<1000000;i++){ //random vector generator begins

12 sign_generator=-1; //By default the sign is negative

13 if(rand()%2==0){ //roll the dice, if even = positive number.

Statistically this is 50% of the numbers generated↪→

14 sign_generator=1; //50% of the numbers will be

positive↪→

15 }//sign generator ends

16 numbers.push_back(sign_generator* (rand() % rand_threshold)

);// new random number generated and signed↪→

17 }//random numbers created

18 //variables for linear search

19 int max=-99999;

20 int min=99999;

21 vector<int> target_index;

22 for (int value : numbers){//Linear search begins

23 if (value > max){//max if statement begins

24 max=value;

25 }//max found if statement ends

26 if (value < min){//max if statement begins

27 min=value;

28 }//max found if statement ends

29 }//Linear search ends

30 cout<<"max is: "<<max<<endl;

31 cout<<"min is: "<<min<<endl;

32 return 0;

33 }//Main Ends

Now, let’s process some data using linear search.

2 LINEAR SEARCH 4

Programmieren in C++ Lecture 3: Data processing in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

2 LINEAR SEARCH 5

Programmieren in C++ Lecture 3: Data processing in C/C++

3 Improving your functions package

– Modify your functions package from our previous session so that it has the following:

1. Build a random number generator function that can intake upper and lower lim-
its and assign a signed (±) random number. See http://www.cplusplus.com/
reference/cstdlib/rand/ and the last example for reference.

2. A linear search function that can return an exact match in an array (one for string
and one for integer at least).

3. A linear search function that can return a minimum value in an array (float).

4. A linear search function that can return a maximum value in an array (float).

5. A linear search that can return the following from an array of numbers:

(a) Minimum and how many times they appear.

(b) Maximum and how many times they appear.

(c) Median and how many times they appear (µ̂).

(d) Sum of all numbers.

(e) Average (µ̄).

(f) Skewness (µ̄− µ̂)

(g) Sum of all square of numbers.

(h) Population variance (σ2 = 1
N

∑N
i x2i − (1

N

∑N
i x)2) and standard deviation

(σ).

(i) Sample variance (s2 = 1
N−ndof

∑N
i (xi−x̄n)

2) and standard deviation (s) (with

1 degree of freedom (ndof=1)).

(j) How many numbers in µ̄± σ, µ̄± 2σ and µ̄± 3σ

– Test all of the above using a vector with 10000 random floats in the range (-999999,999999).

3 IMPROVING YOUR FUNCTIONS PACKAGE 6

http://www.cplusplus.com/reference/cstdlib/rand/
http://www.cplusplus.com/reference/cstdlib/rand/

Programmieren in C++ Lecture 3: Data processing in C/C++

= The theoretical lecture part of this course
will now continue for 15 minutes. =

3 IMPROVING YOUR FUNCTIONS PACKAGE 7

Programmieren in C++ Lecture 3: Data processing in C/C++

4 Data sorting

As you may have found in the last exercise, from a single for loop many operation can be
done. Within some libraries you can always use built-in functions such as finding the average,
median, max/min and some other properties. You need to keep in mind that each time you use
such function, the function has to loop over the entire array or vector. For 1000000 integers,
our computers can do such operation in very short period. You can use a built in bash timer
in the following manner to check:

time run_rand_minmax.exe

max is: 999998

min is: -999995

real 0m0.144s

user 0m0.031s

sys 0m0.047s

the results from increasing from 1000000 to 100000000 numbers result in the following time
chart:

max is: 999998

min is: -999998

real 0m5.183s

user 0m4.125s

sys 0m0.984s

There is a way to calculate the approximate computational power required for each operation
but we will not cover that in this course. However what you need to keep in mind is that each
time you call a built-in function that requires looping over all of your elements in an array or
vector, it wastes the computational time accessing each element. If you program your code
in a way where multiple operations can be done from a single loop, it is more efficient.
For example, you should try to write your own function to get max, min, average, standard
deviation, median and etc. in a single loop rather than running one loop to look for a max,
one loop for min and etc.
For the duration of this course, we are not dealing with such large data, but depending on
your field and your application, you can be dealing with data set much larger than 100 million
integers.
Something else we need to pay attention to is that most of the time we need to categorize and
sort our data. In some cases this is called binning, categorization or even clustering. Let’s
look at the following example:

1 //switch_case0.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 using namespace std;

6 void checker(int i= (int)(NULL)){

7 if(i!=(int)(NULL)){

8 cout<<"I got "<<i<<endl;

9 }

10 else{

11 cout<<"I got NULL"<<endl;

12 }

13 }

4 DATA SORTING 8

Programmieren in C++ Lecture 3: Data processing in C/C++

14 int main(int argc,char *argv[]){//Main begins

15 int input=2;

16 if (input==1){checker(1);}

17 if (input==2){checker(2);}

18 if (input==3){checker(3);}

19 if (input==4){checker(4);}

20 return 0;

21 }//Main Ends

the output is the following:

I got 2

The above code will look for the condition when input is 1, 2, 3 or 4. As you can see for every
condition, there is an entirely new if statement. This is tedious and annoying. Also, what if
we want to perform a hardware operation in sequence?
This is where ”switch” case becomes useful

4.1 Switch case

The following has the same result as above but using switch case condition:

1 //switch_case0.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 using namespace std;

6 void checker(int i= (int)(NULL)){

7 if(i!=(int)(NULL)){

8 cout<<"I got "<<i<<endl;

9 }

10 else{

11 cout<<"I got NULL"<<endl;

12 }

13 }

14 int main(int argc,char *argv[]){//Main begins

15 int input=2;

16 switch (input){

17 case 1: checker(1);

18 break;

19 case 2: checker(2);

20 break;

21 case 3: checker(3);

22 break;

23 case 4: checker(4);

24 break;

25 }

26 return 0;

27 }//Main Ends

output:

I got 2

4 DATA SORTING 9

Programmieren in C++ Lecture 3: Data processing in C/C++

Notice that the ”breaks” have to be placed in between each case. Also the cases do not have
to be in order. Let’s look at a small variation of it:

1 //switch_case0.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 using namespace std;

6 void checker(int i= (int)(NULL)){

7 if(i!=(int)(NULL)){

8 cout<<"I got "<<i<<endl;

9 }

10 else{

11 cout<<"I got NULL"<<endl;

12 }

13 }

14 int main(int argc,char *argv[]){//Main begins

15 int input=2;

16 switch (input){

17 case 2: checker(2);

18 case 1: checker(1);

19 case 4: checker(4);

20 break;

21 case 3: checker(3);

22 break;

23 }

24 return 0;

25 }//Main Ends

and the result is:

I got 2

I got 1

I got 4

You may wonder why this is important. This is particularly useful when you are sorting items
as seen in the following example:

1 //switch_case2.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5

6 using namespace std;

7

8 constexpr unsigned int sitranslate(const char* input_string, int char_index

= 0)↪→

9 {

10 return !input_string[char_index] ? 5381 : (sitranslate(input_string,

char_index+1) * 33) ^ input_string[char_index];↪→

11 }

12 int main(int argc,char *argv[]){//Main begins

13 //string animal="dog";

14 vector<string> animals={"dog","mouse","rodent","pet","domesticated

animal","dog"};↪→

4 DATA SORTING 10

Programmieren in C++ Lecture 3: Data processing in C/C++

15

16 for (string animal : animals){

17 int input=sitranslate(animal.c_str());

18 switch (input){

19 case sitranslate("dog"): cout<<"This is a dog, ";

20 case sitranslate("pet"): cout<<"This is a pet, ";

21 case sitranslate("domesticated animal"): cout<<"This

is a domesticated animal";↪→

22 cout<<endl;

23 break;

24 case sitranslate("mouse"): cout<<"This is a mouse,

";↪→

25 case sitranslate("rodent"): cout<<"This is a

domesticated animal";↪→

26 cout<<endl;

27 break;

28 }

29 }

30 return 0;

31 }//Main Ends

and the output is:

This is a dog, This is a pet, This is a domesticated animal

This is a mouse, This is a domesticated animal

This is a domesticated animal

This is a pet, This is a domesticated animal

This is a domesticated animal

This is a dog, This is a pet, This is a domesticated animal

Similarly such case can be applied to computer I/O. This is particularly useful for all programs
and hardware that requires human-interaction because it allows us to control our interactions
with the computer.
Also note that there is a string-to-integer translator function written. This is because C++
does not yet have a proper interpreter by default to accept strings in a case scenario. For
more information there is a stack exchange discussion in the following: https://stackoverflow.
com/questions/2111667/compile-time-string-hashing but this is far beyond the scope of this
course and you do not need to know much about it.
The following is an example of using switch case to map keys for a stereotypical computer
game ”arrow” and ”w”,”a”,”s”,b” keys and exit keys.

1 //switch_case3.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 using namespace std;

6

7 #include <curses.h> //You must compile with -lncurses flag after your object

is called↪→

8 //Something like this:

9 //g++ -o switch_case3.exe -Wall switch_case3.cxx -lncurses

10 //Defining the key presses to integers so that it can be called from case

11 #define KEY_UP 65

12 #define KEY_DOWN 66

4 DATA SORTING 11

https://stackoverflow.com/questions/2111667/compile-time-string-hashing
https://stackoverflow.com/questions/2111667/compile-time-string-hashing

Programmieren in C++ Lecture 3: Data processing in C/C++

13 #define KEY_LEFT 68

14 #define KEY_RIGHT 67

15

16 int main(int argc,char *argv[]){//Main begins

17 initscr(); //initiating screen for ncurses library

18 noecho(); //eliminating echoing of the key presses in the screen

19 int hit_key = 0; //initializing key press

20 bool loop=true; //escape condition for the while loop

21 while(loop){

22 switch(hit_key=getch()){

23 case 'x' :

24 case 'q' :

25 cout<<"Pressed e(x)it or (q)uit key";

26 cout<<"aborting"<<endl;

27 //endwin();

28 //return(0);

29 loop=false;

30 break;

31 case KEY_UP:

32 case 'w':

33 cout<<"pressing up"<<endl;

34 break;

35 case KEY_DOWN:

36 case 's':

37 cout<<"pressing down"<<endl;

38 break;

39 case KEY_LEFT:

40 case 'a':

41 cout<<"pressing left"<<endl;

42 break;

43 case KEY_RIGHT:

44 case 'd':

45 cout<<"pressing right"<<endl;

46 break;

47 }

48 }

49 endwin(); //returning the screen to normal before exiting.

50 return 0;

51 }//Main Ends

Be mindful that the above uses a new library called ”libncurses”. You will not be able to
compile unless if you set the flag ”-lncurses” in the following manner.

g++ -o switch_case3.exe -Wall switch_case3.cxx -lncurses

or in your Makefile

1 inputcode=switch_case3.cxx

2 CPP=g++

3 SFLAG=-Wall

4 PFLAG=-lncurses

5 @$(CPP) -o $(addprefix run_,$@.exe) $(SFLAG) $(intputcode) $(PFLAG)

4 DATA SORTING 12

Programmieren in C++ Lecture 3: Data processing in C/C++

5 Escape conditions

As you have seen, the switch cases and while loops typically work together to work as an
interactive program. If you are wondering practically all of your devices including your com-
puter, phone, remote control, mouse, or even car are in an infinite loop listening for ”case”
switches.
However you do not want to also switch your computers, phones, remote control or cars off.
If we take the last example, recall the lines 20 to 30

1 int hit_key = 0; //initializing key press

2 bool loop=true; //escape condition for the while loop

3 while(loop){

4 switch(hit_key=getch()){

5 case 'x' :

6 case 'q' :

7 cout<<"Pressed e(x)it or (q)uit key";

8 cout<<"aborting"<<endl;

9 //endwin();

10 //return(0);

11 loop=false;

12 break;

and also the lines 49 and 50

1 endwin(); //returning the screen to normal before exiting.

2 return 0;

You may notice that this case will switch the boolean loop to false, so that the while loop will
terminate, then ”breaks” out of current iteration. The following is a summary of each escape
conditions.

1 break; //will take you out of the current iteration.

2 return; //will take you out of the current function. In the above case the

function is main().↪→

3 exit(0); //will end the program completely.

Note that in switch case3.exe I always call ”endwin();” before escaping out of the main. With
the ”endwin();” your terminal will be broken. In case if you’ve tried, you can fix it by the
following command line (although you will not be able to see what you type):

reset

If you are not careful with the escape conditions, you will very easily break your terminal
session and sometimes the operating system resulting in system freeze and crash. Therefore
you must make sure all of your commands have an escape condition (otherwise it will be stuck
in the infinite loop) and/or break. I have not yet observed a computer hardware breaking as
a result, but a bad program will cause malfunctions in cars, phones and any hardware that
can cause serious damage. So let’s practice our escape conditions.

5 ESCAPE CONDITIONS 13

Programmieren in C++ Lecture 3: Data processing in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

5 ESCAPE CONDITIONS 14

Programmieren in C++ Lecture 3: Data processing in C/C++

6 Sorting data

– Modify your functions package from our previous session so that it has the following:

1. Create an integer function that takes in an array of integers as input and using the
if statements sorts them by multiples (modulus %) of 2, 3, 5, 7 and 11 and prints
them on the screen in the following manner:

2 3 5 7 11
4 6 5 14 33
2 3 10 7 11
10 21 15 21 22

within a for loop

2. Do the same as above using vectors within an infinite while loop.

3. Improve the second function to include negative numbers.

4. Improve the last function above to escape from the while loop (break;) when an
instance of 2020 has been input.

5. Improve the last function above to escape from the function (return;) when an
instance of 6666 has been input.

6. Improve the last function above to end program (exit(0);) when an instance of
12321 has been called.

7. Improve your main, and your functions to package to output that it is escaping
from a loop, function or program.

8. Create a vector of 10000 random numbers and feed it through the function.

7 Conclusion

You now have all of the tools to process data and analyse a given set of information. All of
what we’ve covered are very important1 for this course, and any type of data analysis.
What we are missing so far is data handling. We have not yet talked at all about how to
intake, and output data from and into files.
The next class will cover data handling where we import and export data from the computer’s
data drive and use smaller portion of memory called ”stack” to perform analyses. Often,
mishandling of memory leads to ”memory leak”. The advantage of using ”stack” is that when
the program terminates, the ”stack” gets returned to the operating system.
However the disadvantage of ”stack” are numerous. For more information on memory please
visit: https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/#:∼:text=Insertion%
20Sort-,Stack%20vs%20Heap%20Memory%20Allocation,allocated%20on%20stack%20or%20heap.
&text=Stack%20Allocation%20%3A%20The%20allocation%20happens,happens%20in%20function%
20call%20stack. However the course on memory management will come after data handling
session.
Please keep practising, and complete what you could not here today at home for tomorrow.

Steven J. Lee, Roland Bernet 23. August 2023

1with an exception to lines 8 to 11 of switch case2.cxx

7 CONCLUSION 15

https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/#:~:text=Insertion%20Sort-,Stack%20vs%20Heap%20Memory%20Allocation,allocated%20on%20stack%20or%20heap.&text=Stack%20Allocation%20%3A%20The%20allocation%20happens,happens%20in%20function%20call%20stack.
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/#:~:text=Insertion%20Sort-,Stack%20vs%20Heap%20Memory%20Allocation,allocated%20on%20stack%20or%20heap.&text=Stack%20Allocation%20%3A%20The%20allocation%20happens,happens%20in%20function%20call%20stack.
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/#:~:text=Insertion%20Sort-,Stack%20vs%20Heap%20Memory%20Allocation,allocated%20on%20stack%20or%20heap.&text=Stack%20Allocation%20%3A%20The%20allocation%20happens,happens%20in%20function%20call%20stack.
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/#:~:text=Insertion%20Sort-,Stack%20vs%20Heap%20Memory%20Allocation,allocated%20on%20stack%20or%20heap.&text=Stack%20Allocation%20%3A%20The%20allocation%20happens,happens%20in%20function%20call%20stack.

	Introduction to data processing
	Linear search
	Match
	Minimum and maximum

	Improving your functions package
	Data sorting
	Switch case

	Escape conditions
	Sorting data
	Conclusion

