Electronic properties of fractal lattices Marta Brzezińska, Titus Neupert

Introduction

- Fractals exhibit self-similarity and scale invariance; these features are often desirable for technological applications (e.g. antennae and capacitor designs) as well as fundamental research (quantum interference, optical transmission)
- Fractals have non-integer Hausdorff dimension, which leads to fundamentally different physical properties; $d_H = lnA/lnL$
- **Motivation**: What kind of phases can artificial fractal lattices host? What is the effect of disorder on such systems?

Model

We consider TB model describing spinless fermions in an external magnetic field

$$H=t\sum_{\langle i,j\rangle}e^{iA_{ij}}c_i^{\dagger}c_j+h.c.$$
n on-site disorder term $\frac{W}{2}\sum_i c_i^{\dagger}c_i$

with

Disorder and level spacing distribution

Let $s = (\lambda_{i+1} - \lambda_i) / \langle s \rangle$ be normalized spacing between eigenvalues. If the (weakly) disordered

Sierpinski carpet

1.00 27×2^{-1} 0.75o 0.50-0.25-

Density of states as a function of magnetic flux

similar structure to Hofstadter butterfly

system is not time-reversal invariant, the level spacing distribution P(s) is given by Wigner-Dyson distribution

 $P_{GUE}(s) = \frac{32}{\pi^2} s^2 e^{-4s^2/\pi}$ Localized states (strong disorder) follow the Poisson distribution

$$P(s) = e^{-s}$$

Local markers

Real-space quantities allow to capture properties of disordered systems.

• the Chern number over finite N x N mesh, regardless of boundary conditions

edge-locality marker, which measures the localization of each energy eigenstate

$$\mathfrak{B}_{\lambda} = \sum_{\mathbf{r} \in \mathrm{edge}} |\psi_{\lambda}(\mathbf{r})|^2$$

Current work

studies of Pascal's triangle series

application of the single-particle entanglement spectrum to fractal lattices