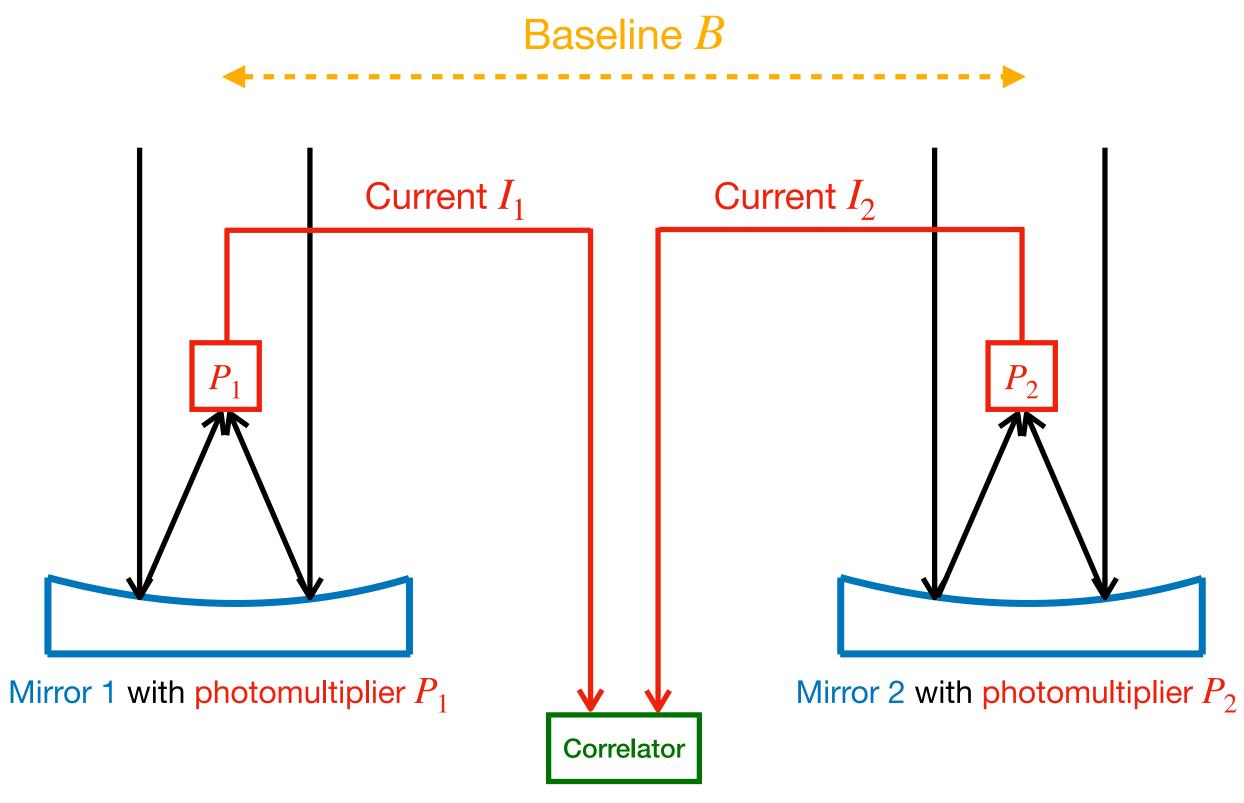
Exoplanet Science with Intensity Interferometry

Roberto Cuissa, Lorenz Zwick, Deniz Soyuer, Timothée Scheaffer, Prasenjit Saha Institute for Computational Science, University of Zurich

Basics of Intensity Interferometry

- The main idea behind intensity interferometry involves temporally correlating the light signals received by a pair of telescopes, separated by a baseline.
- The measured intensities in both telescopes $\langle I_1 \rangle$ and $\langle I_2 \rangle$ (which are averaged over the resolution time) will have a cross correlation profile $\langle I_1 \cdot I_2 \rangle \mathbf{B}$ dependent on the projected baseline \mathbf{B} .
- One can relate the **cross correlation of the intensities** $\langle I_1 \cdot I_2 \rangle$ to the absolute square of the **spatial correlation function** $|\gamma_{12}|^2$ between the two telescopes.
- For a chaotic source, the intensity fluctuations will average out over timescales which are much longer than the coherence time of light. Thus, $\langle \Delta I_1 \cdot \Delta I_2 \rangle = \langle I_1 \rangle \langle I_2 \rangle |\gamma_{12}|^2$.
- If one has a continuous source, then $|\gamma_{12}|^2$ corresponds to the **correlation of photons coming** from different small elements of the sources image on the sky. It will be identical to the Fourier magnitude of the source distribution Σ . Thus, $|\gamma_{12}|^2 = (\mathcal{F}[\Sigma])^2$.

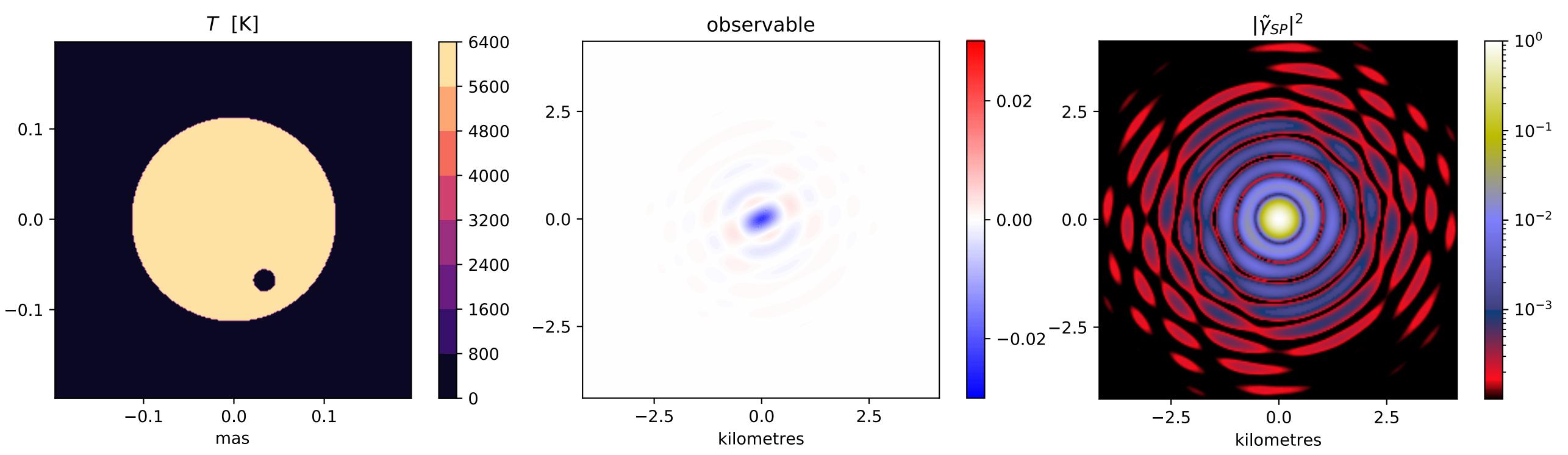


 $\langle I_1 \cdot I_2 \rangle = \langle I_1 \rangle \langle I_2 \rangle (1 + |\gamma_{12}|^2)$

Intensity interferometry can reach resolutions far beyond the capabilities of conventional telescopes and can potentially resolve features on exoplanets!

Prescription for Transit Events

- The spatial correlation function for the star $\gamma_{\rm S}$ is related to the Fourier transform of its light intensity distribution. Thus, $\gamma_{\rm S}({f k}) = \mathcal{F}\left[I(r)\right]_{\rm S} = \int {
 m d}r \, 2\pi r J_0(2\pi r k) I(r)$.
- A transiting planet will appear as a **hole** of radius r_P centered at coordinates $x_P = (x, y)$ in the light intensity distribution of the star: $\gamma(\mathbf{k}, \mathbf{x}_P, r_P) = \mathcal{F}\left[I(r)\right]_S \mathcal{F}\left[I(r)\right]_P$.
- Assuming spherical symmetry of the transiting planet, the observable difference between the normalized spatial correlation function of the star with and without transiting planet, $(|\tilde{\gamma}_{\mathrm{SP}}|^2 - \tilde{\gamma}_{\mathrm{S}}^2 \Sigma_{\mathrm{S}}^2 / \Sigma_{\mathrm{SP}}^2) / \tilde{\gamma}_{\mathrm{S}}$, where Σ_{SP} and Σ_{S} are the normalization values, can be very well approximated by the **analytical formula** $-2\pi\cos(2\pi\mathbf{k}\cdot\mathbf{x}_{\mathrm{P}})I(r)r_{\mathrm{P}\Sigma_{\mathrm{SP}}}^2 + \mathcal{O}(r_{\mathrm{P}}^4)$. Therefore, simple analytical formulas can be used to infer symmetric properties of the system via MCMC methods. Panels show a snapshot of a transit in physical space, baseline space and the spatial correlation function $|\tilde{\gamma}_{SP}|^2$



• For more complicated profiles (e.g. asymmetries relating to wind profiles, molecular abundances etc.) we currently resort to numerical fits. Panels show the imprint of a lopsided shape, and the difference between a lopsided and spherical shape.

