Einführung in die Teilchenphysik

Masterclass 2022

Marc Huwiler

Mit Folien von Simon Corrodi, Katharina Müller und Izaak Neutelings... Danke!

Teilchenphysik

Um was geht's?

Wie?

Wieso?

Um was geht's?

Teilchen-physik

Es geht um die Teilchen die unsere Welt, das Universum und alles was wir kennen konstituieren

Was sind die fundamentalen Teilchen und Kräfte?

Einführung in die Teilchenphysik

- Was sind die kleinsten Teilchen?
- Wie können wir sie messen?
- Wie funktioniert ein Beschleuniger?
- Wie sehen Ereignisse aus, die am CERN gemessen werden?
- Was lernen wir dabei über die Natur und das Universum?
- Was gibt es noch zu Entdecken?

Grundbausteine

1) Aus was für Grundbausteinen werden die Figuren zusammengesetzt ?

Regeln

beobachtet

1) Aus was für Grundbausteinen werden die Figuren zusammengesetzt ?

2) Was für Regeln gelten beim Zusammenfügen?

(Nicht-)Beobachtung von Prozessen

1) Aus was für Grundbausteinen werden die Figuren zusammengesetzt ?

2) Was für Regeln gelten beim Zusammenfügen? Dreiecke: eine Verbindung Quadrate: zwei Verbindungen

3) ist die Lösung eindeutig?Wenn nicht – nach was für Formen müsste man suchen, um verschiedene Hypothesen zu überprüfen?

Wichtig: es braucht auch das Wissen über die Formen, die nicht vorkommen!

Woraus besteht Materie?

- ca. 600 v. Chr.: 4 Elemente
- heute?

Grössenordnungen

Atom	10 ⁻¹⁰ m
Atomkern	10 ⁻¹⁴ m
Proton	10 ⁻¹⁵ m
Quark	<10 ⁻¹⁸ m
Elektron	<10 ⁻¹⁹ m
and the second se	

Atom == Mond Quark == Orange

Woraus besteht Materie?

Frage: wie sieht man <10⁻¹⁶cm?

Antwort: de Broglie: $E \sim 1/\lambda$; hohe Energien

Quarks

- Elementarteilchen
- Ladung:
 - up: +2/3e
 - down: -1/3e
- 3 "Farben"
- nie "alleine"

Quark composition of a proton and a neutron (diagrams from Wikipedia)

Standard Modell: Teilchen I

Bemerkung $1 \text{ MeV/c}^2 = 1.78 \times 10^{-30} \text{ kg}$

Etwas fehlt ...

freies Neutron zerfällt $n \rightarrow p + e (\beta - Zerfall)$ Lebensdauer 15 Minuten

Energieerhaltung, E=mc²

Lizenziert unter CC-BY-SA 4.0 https://commons.wikimedia.org/wiki/File: Beta_spectrum_of_RaE.jpg

Etwas fehlt ... das Neutrino

n

р

+

e

⇒ Das Neutrino ist ein Grundbaustein aber nicht Teil der Atome

Entdeckung des Neutrinos

Nachweis 1956: Neutrino + Proton \rightarrow Positron + Neutron

Neutrinodetektoren

- sehr gross
- gut abgeschirmt: Bergwerk, Meer, Eis
- Rate: ein paar tausend Ereignisse pro Jahr

Neutrinos

Neutrinos sind sehr häufig!

10¹⁴ Neutrinos von der Sonne pro Sekunde durch unseren Körper

30 Millionen Neutrinos vom Urknall

10¹⁰ Neutrinos pro Sekunde pro cm²

Wir merken davon nichts, unsere Materie ist fast durchsichtig für Neutrinos

Neutrinos sind die häufigsten Elementarteilchen 10⁸⁹! → pro Elektron, Proton oder Neutron gibt es 1 Milliarde Neutrinos!

"ONE HUNDRED MILLION NEUTRINOS ARE PASSING THROUGH OUR BODIES EVERY SECOND AND WE'RE WORRED ABOUT THE PRICE OF COFFEE."

Standard Modell: Neutrinos

mass \rightarrow	≈2.3 MeV/c²
charge \rightarrow	2/3
spin \rightarrow	1/2
	up
	≈4.8 MeV/c²
ARKS	-1/3 1/2 d
1nb	down
	0.511 MeV/c ²
	-1 1/2 e
	electron
S	<2.2 eV/c ²
TON	0 1/2 Ve
LEP.	electron neutrino

Neutrino

- Elementarteilchen
- Ladung: 0
- Masse: sehr klein nicht 0

Kosmische Höhenstrahlung

Teilchen aus dem All

- 1912 entdeckt von Frank Hess
- Quelle: Sonne, Milchstrasse, Galaxien
- ca 1000 Teilchen pro m² und Sekunde
- Wechselwirkung mit Gasmolekülen: Teilchenschauer mit Sekundärteilchen

 → neue Teilchen können erzeugt werden zB Muon, Kaon, Pion ...
- zum Teil extrem energiereich 10 Millionen mal höher als am LHC

DESY - physik.begreifen - Einführung kosmische Teilchen physik-begreifen-zeuthen.desy.de

Wie?

Der LHC (Large Hadron Collider) am CERN

Protons werden auf Enorme Energien beschleunigt

⇒ 6.5 [TeV]

Energie in der Kollision: 13 TeV (13.8 TeV von 2021 an)

Zirkularbeschleuniger mit **27km** Umfang, ~100m unter dem Erdboden, in Genf

Zwei Protonstrahlen verlaufen in Gegenrichtung, und prallen aufeinander an 4 Punkten, wo die grossen Experimente sich befinden

⇒ Mehr Infos in der nächsten Präsentation (mit Pascal!)

Enorme Energien

Ein Auto

=> 200 [km/h] (= 55.55 [m/s])

1 [t] (= 1000 [kg])

Kinetische Energie:
$$E_{kin} = \frac{1}{2} mv^2 = \frac{1}{2} \cdot 1000 \cdot 55.55^2 = \frac{1543209.88}{209.88} [J]$$

 $E_{M} = mc^{2} = 1000 \cdot 299\ 792\ 458 \approx 299\ 792\ 458\ 000\ [J]$ Massenenergie:

Verhältnis:
$$r = \frac{E_{kin}}{E_{M}} = 0.00000515$$

Ein Proton im LHC

Kinetische Energie: $E_{kin} = m\gamma v^2 = mc^2(\gamma - 1) \approx 6'500 [GeV]$

Massenenergie: $E_M = mc^2 \approx 1$ [GeV]

Verhältnis:
$$r = \frac{E_{kin}}{E_M} = \frac{6'500}{2}$$

Relativität: Materie – Energie Aequivalenz

- E = mc² (Konsequenz der Speziellen Relativitätstheorie)
- ⇒ Energie kann in Materie umgewandelt werden, und umgekehrt!

Neue Teilchen entstehen in den Kollisionen!

⇒ Sogar Teilchen die Schwerer sind, als die die zusammengeprallt sind!

Die Teilchen des Standard Models

Standard Model of Elementary Particles

Quarks findet man nicht alleine

Sie kommen immer gruppiert vor:

- in 2: Mesonen (1 Quark und 1 Antiquark)
- in 3: Baryonen (3 (Anti-)Quarks)
- in 4: Tetraquarks (2 Quarks und 2 Antiquarks)
- in 5: Pentaquarks (4 Quarks und 1 Antiquark, oder umgekehrt)

in ... ?

 \Rightarrow Es gibt also möglicherweise 2 C⁵₃ Baryonen, und 2 C⁵₂ Mesonen ...

Antimaterie

1926 postuliert von Paul Dirac:

zu jedem Teilchen gibt es ein Antiteilchen mit gleicher Masse aber umgekehrter Ladung (ladungsähnliche Quantenzahlen)

→ Anzahl Elementarteilchen verdoppelt
 1932: Nachweis vom Anti-Elektron = Positron

$$\left(\frac{E}{c}\right)^2 - p^2 = (mc)^2$$
$$\left(\frac{E}{c} - \vec{\sigma} \cdot \vec{p}\right) \left(\frac{E}{c} + \vec{\sigma} \cdot \vec{p}\right) = (mc)^2$$
$$\left(i\hbar\frac{\partial}{\partial x_0} + i\hbar\vec{\sigma} \cdot \vec{\nabla}\right) \left(i\hbar\frac{\partial}{\partial x_0} - i\hbar\vec{\sigma} \cdot \vec{\nabla}\right) \phi = (mc)^2\phi$$

Carl David Anderson Nobelpreis 1936

Antimaterie

Zu jedem Materienteilchen gibt es ein Antiteilchen gleicher Masse, mit umgekehrten Ladungen (Quantenzahlen)

Man bezeichnet als **Antimaterie** die Antiteilchen der Teilchen die häufiger vorkommen im Universum

Standard Model of Elementary Particles

Das Standard Modell

Beispiel: $t\overline{t}$ Produktion und Zerfall des t Quarks

t DECAY MODES		Fraction (Γ_i/Γ) Confider		Confidence level	р (MeV/c)	
$t \rightarrow Wq(q = b, s, d)$					_	
$t \rightarrow W b$					_	
$t \rightarrow e \nu_e b$		(13.3±0.	6) %		-	
$t ightarrow \ \mu u_{\mu} b$	(13.4±0.6) %					
$t \rightarrow \tau \nu_{ au} b$	(7.1±0.6)%					
$t ightarrow q \overline{q} b$		(66.5±1.	4) %		-	
$\Delta T = 1$	weak	neutral current	(<i>T1</i>) m	odes		
$t \rightarrow Zq(q=u,c)$	Τ1	[c] < 5	× 10 ⁻	4 95%	-	
$t \rightarrow H u$	Τ1	< 1.9	$\times 10^{-1}$	3 95%	_	
$t \rightarrow Hc$	T1	< 1.6	$\times 10^{-1}$	3 95%	-	
$t \rightarrow \ell^+ \overline{q} \overline{q'}(q=d,s,b;$	Τ1	< 1.6	$\times 10^{-1}$	3 95%	-	
q'=u,c)						

Andere Beispiele

	Scale fai	ctor/ p						
B ⁺ DECAY MODES	Fraction (Γ_i/Γ) Confidence	level (MeV/c)	$\overline{D}^0 \tau^+ \nu_{\tau}$	$(7.7 \pm 2.5) \times 10^{-3}$	1911	$\overline{D}^0 \kappa^+ \overline{\kappa}^0$	$(55 + 16) \times 10^{-4}$	2180
	Semilentonic and lentonic modes		$\overline{D}^{*}(2007)^{0}\ell^{+}\nu_{\ell}$	[a] (5.66 ± 0.22)%	2258	$\frac{D^0}{D^0} K^+ \frac{K}{K^*} (802)^0$	$(3.5 \pm 1.0) \times 10^{-4}$	2109
$\ell^+ \nu_e X$	[a] (10.99 + 0.28)%	_	$\overline{D}^{*}(2007)^{0} \tau^{+} \nu_{\tau}$	(1.88 ± 0.20)%	1839	$\frac{D}{D^0}\pi^+\pi^+\pi^-$	$(56 \pm 21) \times 10^{-3}$ S-36	5 2280
$e^+ \nu_e X_e$	$(10.8 \pm 0.4)\%$	_	$D^-\pi^+\ell^+\nu_\ell$	$(4.4 \pm 0.4) \times 10^{-3}$	2306	$\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-}$ nonresonant	$(5.0 \pm 2.1) \times 10^{-3}$	2289
$D\ell^+\nu_\ell X$	$(9.7 \pm 0.7)\%$	-	$D_0^*(2420)^0 \ell^+ \nu_\ell, \ D_0^{*0} \to$	$(2.5 \pm 0.5) \times 10^{-3}$	-	$\overline{D}^0 \pi^+ \rho^0$	$(4.2 \pm 3.0) \times 10^{-3}$	2208
$\overline{D}^0 \ell^+ \nu_{\ell}$	[a] (2.35 ± 0.09)%	2310	$\frac{D^{-}\pi^{+}}{D^{*}(2460)^{0}\ell^{+}}$	$(153 \pm 0.16) \times 10^{-3}$	2065	$\overline{D}^{0} a_{1}(1260)^{+}$	$(4 \pm 4) \times 10^{-3}$	2123
			$D_2(2400) \stackrel{\circ}{\iota} \stackrel{\nu_\ell}{\nu_\ell}, D_2 \rightarrow D^+$	(1.55 ± 0.10)×10	2005	$\overline{D}^0 \omega \pi^+$	$(4.1 \pm 0.9) \times 10^{-3}$	2206
D- X	(110 ± 0.40)	_	$D^{(*)}n\pi\ell^{+}\nu_{\ell}(n \geq 1)$	$(1.86 \pm 0.26)\%$	-	$D^{*}(2010)^{-}\pi^{+}\pi^{+}$	$(1.35 \pm 0.22) \times 10^{-3}$	2247
D _s A	(1.10 - 0.32) /0		$D^{*-}\pi^+\ell^+\nu_\ell$	$(6.0 \pm 0.4) \times 10^{-3}$	2254	$D^{*}(2010)^{-}K^{+}\pi^{+}$	$(8.2 \pm 1.4) \times 10^{-5}$	2206
$\Lambda_{c}^{+}X$	$\begin{pmatrix} 2.1 & + & 0.9 \\ - & 0.6 \end{pmatrix}$ %	-	$\overline{D}_1(2420)^0 \ell^+ \nu_\ell, \overline{D}_1^0 \rightarrow$	$(3.03 \pm 0.20) \times 10^{-3}$	2084	$\overline{D}_1(2420)^0 \pi^+$, $\overline{D}_1^0 \rightarrow$	$(5.2 \pm 2.2) \times 10^{-4}$	2081
$\overline{\Lambda}^{-} x$	(28 + 1.1)%	_	$D^{*-}\pi^+$			$D^{*}(2010)^{-}\pi^{+}$		
- X	$(2.0 - 0.9)^{1/0}$		$D'_{1}(2430)^{\circ}\ell^{+}\nu_{\ell}, D'_{1}^{\circ} \rightarrow$	\rightarrow (2.7 ± 0.6)×10 ⁻³	-	$D^{-}\pi^{+}\pi^{+}$	$(1.07 \pm 0.05) \times 10^{-3}$	2299
c A	(97 ± 4)%	-	$\frac{D^{*-}\pi^{+}}{D^{*}(2460)^{0}\ell^{+}}$	$(101 \pm 0.24) \times 10^{-3}$ S=2.0	2065	$D^{-}K^{+}\pi^{+}$	$(7.7 \pm 0.5) \times 10^{-5}$	2260
сX	(23.4 + 2.2) %	-	$\overline{D}_{2}^{(2+00)} \rightarrow D^{*-}\pi^{+}$	(1.01 ± 0.24)×10 3=2.0	2005	$D_0^*(2300)^0 K^+, D_0^{*0} \rightarrow$	$(6.1 \pm 2.4) \times 10^{-6}$	-
$c/\overline{c}X$	(120 ± 6)%	-	$\overline{D}^{0}\pi^{+}\pi^{-}\ell^{+}\nu_{e}$	$(17 + 04) \times 10^{-3}$	2301	$D^{-}\pi^{+}$		
	D D* or D, modes		$\overline{D}^{*0}\pi^+\pi^-\ell^+\nu_\ell$	$(8 \pm 5) \times 10^{-4}$	2248	$D_2^+(2460)^\circ K^+, D_2^{-\circ} \rightarrow$	$(2.32 \pm 0.23) \times 10^{-3}$	-
$\overline{D}^{0}\pi^{+}$	$(468 \pm 0.13) \times 10^{-3}$	2308	$D^{(*)-}K^+\ell^+\nu_\ell$	$(6.1 \pm 1.0) \times 10^{-4}$	-	$D^{-}\pi^{+}$ $D^{*}(2760)^{0}K^{+}$ D^{*0}	$(36 + 12) \times 10^{-6}$	_
$D_{CP(+1)}\pi^+$	[b] $(2.05 \pm 0.18) \times 10^{-3}$		$D^- K^+ \ell^+ \mu_a$	$(30 + 1.4) \times 10^{-4}$	2242	$D^{-}\pi^{+}$	(0.0 1 1.2) × 10	
$D_{CP(-1)}\pi^+$	[b] (2.0 + 0.4)×10 ⁻³	-	$D_s = (x + c + c + c + c + c + c + c + c + c + $	$(3.0 - 1.2) \times 10^{-10}$	2242	$D^+ \kappa^0$	$< 2.9 \times 10^{-6} CL=90\%$	2278
$\overline{D}^{0} a^{+}$	$(134 \pm 0.18)\%$	2237	$D_s K \ell' \nu_\ell$	$(2.9 \pm 1.9) \times 10^{-4}$	2185	$D^{+}K^{+}\pi^{-}$	$(5.6 \pm 1.1) \times 10^{-6}$	2260
$\overline{D}^0 K^+$	$(3.63 \pm 0.12) \times 10^{-4}$	2281	$\pi^{\ell} \ell^{+} \nu_{\ell}$	$(7.80 \pm 0.27) \times 10^{-5}$	2638	$D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$	$< 6.3 \times 10^{-7} CL=90\%$, –
$D_{CP(\pm 1)}K^+$	[b] $(1.80 \pm 0.07) \times 10^{-4}$	_	$n'\ell^+\nu_\ell$	$(3.9 \pm 0.5) \times 10^{-5}$	2011	$D^{+}\pi^{-}$		
$D_{CP(-1)}K^+$	[b] $(1.96 \pm 0.18) \times 10^{-4}$	-	$\omega \ell^+ \nu_{\ell}$	[a] (1.19 ± 0.09)×10 ⁻⁴	2582	$D^+ \underline{K^{*0}}$	$< 4.9 \times 10^{-7} \text{ CL}=90\%$, 2211
$D^{0}K^{+}$	$(3.57 \pm 0.35) \times 10^{-6}$	2281	$\rho^0 \ell^+ \nu_\ell$	[a] $(1.58 \pm 0.11) \times 10^{-4}$	2583	$D^+ K^{*0}$	$< 1.4 \times 10^{-6} CL=90\%$, 2211
$[K^{-}\pi^{+}]_{D}K^{+}$	$[c] < 2.8 \times 10^{-7} \text{ CL}=9$	90% -	$p\overline{p}\ell^+\nu_\ell$	$(5.8 + 2.6) \times 10^{-6}$	2467	$D^{*}(2007)^{\circ}\pi^{+}$	$(4.90 \pm 0.17) \times 10^{-3}$	2256
$[K^{+}\pi^{-}]_{D}K^{+}$	$[c] < 1.5 \times 10^{-5} \text{ CL}=9$	90% -	n n u ⁺ u	< 85 × 10 ⁻⁶ CI -00%	2446	$D_{CP(+1)}^{\infty}\pi$	[d] (2.7 ± 0.6)×10 ⁻³	-
$[K^{-}\pi^{+}\pi^{0}]_{D}K^{+}$	seen	-		(a a + 4.0) to-6	2110	$D^{*0}_{CP(-1)}\pi^+$	[d] (2.4 ± 0.9)×10 ⁻³	-
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$	seen	-	ppe v _e	(8.2 - 3.3) × 10 °	2467	$\overline{D}^{*}(2007)^{0} \omega \pi^{+}$	$(4.5 \pm 1.2) \times 10^{-3}$	2149
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}$	seen	-	$e^+ \nu_e$	$< 9.8 \times 10^{-7} \text{ CL}=90\%$	2640	$\overline{D}^{*}(2007)^{0}\rho^{+}$	$(9.8 \pm 1.7) \times 10^{-3}$	2181
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$	seen	-	$\mu^+ \nu_{\mu}$	2.90 × 10 ⁻⁰⁷ to 1.07 × 10 ⁻⁰⁶ CL=90%	2639	D*(2007) ⁰ K ⁺	$(3.97 + 0.31 \\ 0.28) \times 10^{-4}$	2227
$[K \pi^{+}]_{D}\pi^{+}$	[c] $(6.3 \pm 1.1) \times 10^{-7}$	-	$\tau + \nu_{\tau}$	$(1.09 \pm 0.24) \times 10^{-4}$ S=1.2	2341	\overline{D}^{*0} , K^+	$[d] (260 \pm 0.33) \times 10^{-4}$	_
$[K^{-}\pi^{+}\pi^{0}]_{-}\pi^{+}$	(1.78 ± 0.32) × 10 ·	_	$e^+ \nu \gamma$	$< 3.0 \times 10^{-6} \text{ CL}=90\%$	2640	$\frac{D}{D*0}$	[u] (2.00 ± 0.00) × 10	
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$	seen	_	$u^+\nu_u\gamma$	$< 3.4 \times 10^{-6} \text{ CL}=90\%$	2639	$D_{CP(-1)}K$	[d] (2.19 ± 0.30) × 10	-
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}\pi^{+}$	seen	-	, μ.			$D^{*}(2007)^{0}K^{+}$	$(7.8 \pm 2.2) \times 10^{-6}$	2227
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}D^{+}\pi^{+}$	seen	-	μ ⁰ Χ		_	$D^{*}(2007)^{\circ}K^{*}(892)^{+}$	$(8.1 \pm 1.4) \times 10^{-4}$	2156
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$	$(4.6 \pm 0.9) \times 10^{-6}$	-	$\frac{D}{D^0} X$	$(79 \pm 4)\%$	_	$D^{*}(2007)^{\circ}K^{+}K^{\circ}$	$< 1.06 \times 10^{-3} \text{ CL}=90\%$	2132
$[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$	seen	-	D^+X	$(2.5 \pm 0.5)\%$	-	$D^{*}(2007)^{\circ} K^{+} K^{\circ}(892)^{\circ}$	$(1.5 \pm 0.4) \times 10^{-5}$	2009
$[K_{S}^{0}K^{-}\pi^{+}]_{D}K^{+}$	seen	-	D^-X	(9.9 ± 1.2)%	-	$D^{*}(2007)^{\circ}\pi^{\circ}\pi^{\circ}\pi^{\circ}\pi^{\circ}\pi^{\circ}\pi^{\circ}\pi^{\circ}\pi$	$(1.03 \pm 0.12)\%$	2230
$[K^*(892)^+ K^-]_D K^-$	+ seen	-	D^+X	(7.9 + 1.4)%	-	$D^{*}(2007)^{0}\pi^{-}\pi^{+}\pi^{+}\pi^{0}$	$(1.9 \pm 0.5)\%$	2003
$[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$	seen	-	5	- 1.5		$\frac{D}{D^{*0}} 3\pi^+ 2\pi^-$	$(57 \pm 12) \times 10^{-3}$	2106
$[K^*(892)^+K^-]_D\pi^+$	seen	-				$D^{*}(2010)^{+}\pi^{0}$	$< 3.6 \times 10^{-6}$	2255
$[K_{S}^{0}K^{+}\pi^{-}]_{D}\pi^{+}$	seen	-				())		
$[K^*(892)^-K^+]_D\pi^+$	seen	-						
$D^{\circ}K^{*}(892)^{+}$	$(5.3 \pm 0.4) \times 10^{-4}$	2213						
$D_{CP(-1)}K^{*}(892)^{+}$	[b] $(2.7 \pm 0.8) \times 10^{-4}$	-						
$D_{CP(+1)}K^{*}(892)^{+}$	[b] $(6.2 \pm 0.7) \times 10^{-4}$	-						
$D^{\circ}K^{*}(892)^{+}$	$(3.1 \pm 1.6) \times 10^{-6}$	2213				•••		
$D^{\circ}K^{+}\pi^{+}\pi^{-}$	$(5.2 \pm 2.1) \times 10^{-4}$	2237						

Ein CMS Event

Ein *Event* besteht aus den Spuren, die alle in einer Kollsion entstandenen Teilchen im Detektor hinterlassen, und wird gespeichert (falls es genügend interessant ist)

Mögliches $H \rightarrow \gamma \gamma$ event

Wie interagieren Teilchen?

Wie interagieren Teilchen? Kräfte

Gravitation (Schwerkraft)

Planetenbahnen, Gewichtskraft

- nur positiv
- Reichweite: ∞

Elektromagnetische Kraft

Licht, Elektrizität, Magnetismus, Elektronen um den Kern -> Chemie

- positiv/negativ
- Reichweite: ∞

Schwache Wechselwirkung

Beta-Zerfall, Fusion (Sonne), Leptonen <-> Quarks - Reichweite: klein (~10⁻¹⁶cm)

Starke Wechselwirkung

Zusammenhalt der Protonen/Neutronen, Quarks <-> Quarks

- Reichweite: speziell

Wechselwirkung: Austausch von Bosonen

rel. Stärke Reichweite Wechselwirkung "Ladung" Boson 10^{-2} Elektromagn. elektrisch Photon (y) ∞ **10**⁻¹⁵ 10^{-25} m Schwache schwache W⁺ , W⁻, Z 10⁻¹⁵m Starke Farbladung Gluon (g) 1 Graviton? 10^{-38} Gravitation Masse ∞

Zu jeder Kraft gehört ein oder mehrere Austauschteilchen = Boson (Botenteilchen)

Die Botenteilchen der schwachen Kraft sind schwer, W, Z: 90 mal Protonmasse

 \rightarrow schwache Kraft ist extrem schwach

"Botenteilchen": Bosonen

Wechselwirkungen werden durch "Botenteilchen" (Bosonen) vermittelt.

Wechselwirkung	Teilchen (Boson)	Ladung	Relative Stärke
Elektromagnetisch	Photon (¥)	elektrisch	10 ⁻²
Schwach	W ⁺ , W ⁻ , Z ⁰	"schwach"	10 ⁻¹⁵
Stark	Gluon (g)	Farbe	1
Gravitation	Graviton?	Masse	10 ⁻⁴¹

Starke Wechselwirkung

"bekannte Kräfte" (Elektromagnetisch, Gravitation) $F \sim 1/r^2$

Starke Wechselwirkung

stärker je weiter die Teilchen auseinander, Vorstellung: Gummi-Band

Grund weshalb es keine freien Quarks gibt

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ + i X B X + h.c $+ \chi_i \mathcal{Y}_{ij} \chi_j \not = h.c.$ $\chi = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ $+ i F B \mu + h_{\star}$ $+\left|\mathcal{D}_{M}\varphi\right|^{2}-V(\varphi)$ + $\chi_i Y_{ij} \chi_j \not p$ + h_i + $|D_{\mu} \not p|^2 - V(\not p)$

Starke Wechselwirkung

http://www.symmetrymagazine.org/article/the-decon structed-standard-model-equation

Theory: Das Standard Modell

- Elementarteilchen
- Wechselwirkungen (ausser Gravitation)
- 26 freie Parameter (z.B. m_{Higgs,} m_z)

- kompatibel mit der speziellen Relativitätstheorie
- sehr gut getestet: Bsp g_{Elektron}

Gemessen: $g_{Elektron} = -2.00231930436182(52)$ Theorie: $g_{Elektron} = -2.0023193048(8)$

How to measure g – 2?

Larmor precession
$$\omega_{\rm S} = g \frac{e}{2m} B$$

anomalous frequency $\omega_{\rm a} = \omega_{\rm S} - \omega_{\rm C} \sim O(10^{-3})$
cyclotron oscillation $\omega_{\rm C} = \frac{e}{m} B$
 $\Rightarrow \frac{g}{2} = \frac{\omega_{\rm S}}{\omega_{\rm C}} = 1 + \frac{\omega_{\rm a}}{\omega_{\rm C}}$ by measuring $\omega_{\rm a}/\omega_{\rm C}$

Universität Zürich, Physik-Institut, Izaak Neutelings

Muon g – 2 main idea

Muon g – 2

- muon lifetime ~ 2.2 μs
 ⇒ use storage rings instead of Penning traps
- 1961: CERN ~0.2%
- 1962–1968: CERN ~270 ppm
- 1974–1976: CERN ~10 ppm
- 1997–1999: BNL ~1.3 ppm
- 2000–2001: BNL ~0.54 ppm
- 2018–2020: FNAL ~0.14 ppm

https://arxiv.org/pdf/1802.02995.pdf

Masse der Elementarteilchen

Masse wird nicht vorhergesagt→ experimentelle Bestimmung

http://davidc.web.cern.ch/davidc/gfx/mass_comparison.png

Masse der Elementarteilchen

https://naturwissenschaften.ch/particle-physics-explained/particles_forces/elementary_particles

Wieso ist es interessant?

Antimaterie

Teilchen und sein Antiteilchen können sich vernichten:

 $E = mc^2$

Urknall:

aus Energie entstand Materie und Antimaterie Sekunden später verschwand die ganze Antimaterie 1 Materieteilchen auf 1 Milliarde Antiteilchen blieb übrig

Warum?

Dunkle Materie

Problem:

Astronomische Beobachtungen entsprechen nicht den Theoretischen Erwartungen

Mögliche Erklärungen:

A) Die Gesetze der Physik (Gravitation) sind nicht mehr korrekt auf sehr grossen Distanzen

B) Diese Masse existiert, aber man weiss nicht aus was sie besteht

Dunkle Materie

 \Rightarrow Es gibt noch viel, das wir nicht verstehen

Ok. Und jetzt?

Fragen

wie passt **Gravitation** ins Bild? wieso gibt es mehr **Materie als Anti-Materie**? wieso dehnt sich das Universum aus? was ist **dunkle Materie**? was ist dunkle Energie?

wieso 26 freie Parameter? wieso sind diese so verschieden? (Naturalness) wieso 3 Familien? wieso ist "**fine-tuning**" notwendig?

Ok. und jetzt?

Direkt (neue Teilchen)

Indirekt (stimmt irgend etwas nicht?)

Ok. Und jetzt?

Hohe Energien (~13 TeV) Hohe Intensitäten (Präzision, ~MeV)

Kosmische Strahlung

CERN: **Beschleuniger** neue Teilchen? (nächster Vortrag)

nEDM (PSI, Villigen) stimmt was nicht? elektrische Dipolmoment des Neutrons

CTA Teleskop Cherenkov Telescope Array Teilchen kosmischen Ursprungs

Heute: W- und Z-Bosonen Standard Modell Test

Heute: W- und Z-Bosonen

was kann passieren? was schauen wir uns an? was können wir testen?

- "von Links nach Rechts"
- Quark + Anti-Quark -> Z⁰
- Z⁰ zerfällt sofort in e⁺/e⁻

Heute: W- und Z-Bosonen

was kann passieren? was schauen wir uns an? was können wir testen?

- "von Links nach Rechts"
- Quark + Anti-Quark -> Z⁰
- Z⁰ zerfällt sofort in e⁺/e⁻
- Welche dieser Diagramme es gibt folgt aus dem "Lagrangian"

Z⁰-Boson -> 2 Leptonen

 Z^0 zerfällt sofort: im Detektor sehen wir Leptonen (e/µ)

- Quark + Anti-Quark: Ladung 0
- Z⁰: Ladung 0
- e^+/e^- oder μ^+/μ^- : Ladung 0

W^{-/+}-Boson -> 1 Lepton

W^{+/-} zerfallen sofort, Neutrinos sind "unsichtbar" für den Detektor im Detektor sehen wir Leptonen (e/µ)

- Up(2/3) + Anti-Down(1/3): Ladung +
- W⁺: Ladung +
- e^+/v_e oder μ^+/v_{μ} : Ladung +

- Down(-1/3) + Anti-Up(-2/3): Ladung -
- W⁻: Ladung -
- $e^{-7}\overline{v}_{e}$ oder $\mu^{-7}\overline{v}_{\mu}$: Ladung -

Heute: Was testen/messen wir?

Standard Modell Vorhersagen:

- Verhältnis von Zerfällen nach e und µ (W- und Z-Bosonen)
- Verhältnis von produzierten W⁺ und W⁻
- Verhältnis von produzierten Z⁰ und W^{+/-}

Freier Parameter im Standard Modell:

• Masse Z⁰

Das Higgs-Boson (Link)

