The Mu3e Experiment and its Pixel Detector

Vadym Denysenko, Olaf Steinkamp [olafs@physik.uzh.ch]

Lepton-flavour violating muon decays

→ $\mu \rightarrow e \gamma$, $\mu \rightarrow e e e e$, $\mu N \rightarrow e N$

University of

urich^{UZH}

- "forbidden" in Standard Model of Particle Physics, e.g.

Signal and background

- inner pixel layers for vertex resolution | outer pixel layers for momentum resolution | scintillating fibres/tiles for timing resolution
 - electrons/positrons from muon decays at rest \rightarrow very low energy \rightarrow material budget crucial for momentum resolution !

Gaseous Helium cooling

need to remove about 4.5 kW of heat

- front-end electronics in HV-CMOS process, embedded inside silicon detector substrate
- \rightarrow low capacitance \rightarrow low noise \rightarrow thin detectors ! (prototypes down to 62.5 μ m, final goal 50 μ m)
- → bias voltage up to 100 V \rightarrow fast signal collection (measured < 15 ns, further improvement expected)
 - expect final prototype by summer 2019

dissipated by the pixel detector

→ need low mass → gaseous Helium

R&D programme to demonstrate feasibility (required gas flows, stability, vibrations)

Poster prepared for the Open Days of the Department of Physics at UZH, November 1-2, 2018. For more information on Mu3e and proposed UZH contributions to the Mu3e pixel detector, contact Olaf Steinkamp <olafs@physik.uzh.ch>.