The $\{m_h, m_t\}$ plane: Standard Model criticality vs. high-scale SUSY

¹ Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland ² Dipartimento di Fisica e Astronomia `G. Galilei', Università di Padova, Italy

Motivations

In recent years, the study of Standard Model (SM) behaviour under the Renormalization Group Equation (RGE) flow has revealed an interesting peculiarity: the measured values of Higgs and Top masses lie in the narrow SM metastability region (the region where electroweak vacuum is unstable) but sufficiently long-lived compared to the age of the Universe, and the SM can be considered a viable theory up to the Planck scale). This work shows that also within the Minimal Supersymmetric Standard Model (MSSM), studied with an analogous philosophy, the measured values of m_h and m_t reveal interesting features. These features are somehow equally surprising and perhaps with more fertile implications.

1. Novelty of the work

2. Details of the performed analysis

Former works have focused their attention on single requirements (such as quartic Higgs coupling matching or gauge coupling unification) using as variables the SUSY scale m_s and/or the Higgs mass m_h , but rarely the Top mass m_t , despite many valid motivations for doing so.

Here we have **analysed the MSSM** for different plausible SUSY-breaking scales ($m_S = 2$, 5, 100, 1000 TeV), using the { m_h, m_t } plane perspective, looking for viable configurations with simultaneous:

- gauge coupling unification
- satisfactory quartic Higgs coupling (λ) matching
- natural parameters configuration at the GUT scale
- Radiatively realised ElectroWeak Symmetry Breakdown (REWSB)

3. Results in a low-scale SUSY scenario

Results for $m_S = 5$ TeV:

- Many factors contribute to the final shape:
- I. For higher m_t , $\lambda(m_s)$ becomes negative
- II. For higher m_t , $y_t(\mu)$ develop a Landau pole before *m_{GUT}*

4. Changing the analysis parameters

By modifying the analysis parameters and observing the effects, we get a deeper understanding of the physics that originates the borders:

Enlarged natural range at m_{GUT}

Reduced λ -matching tolerance

III. For higher m_h , $\lambda(m_s)$ becomes too big IV. For lower m_t / higher m_h , EWSB and $\lambda(m_s)$ matching are incompatible V. For lower m_t , EWSB cannot be

radiatively induced

VI. For $m_S = 5$ TeV, the measured $\{m_h, m_t\}$ values are allowed by a naïve analysis, but excluded by our more sophisticated analysis.

5. Comparison for different SUSY scales

By comparing the results for different SUSY scales we can better appreciate the peculiar position of the SM in the space of possible vacua.

- I. $m_S > 2$ TeV, due to direct searches bounds
 - $m_S < 10^6 \,\text{GeV}$, otherwise gauge coupling unification is spoiled
- II. For high m_t , $d\lambda(\mu)/d\mu < 0$. Thus, for higher

6. Conclusions

This analysis has two important novelties:

- m_t is a scanned input parameter (as m_h)
- we introduce **a Radiative EWSB** condition

 m_S we have lower $\lambda(m_S)$, causing the observed shift to the right

- III. For low m_t , $d\lambda(\mu)/d\mu > 0$. Thus, for higher m_S we have higher $\lambda(m_S)$, causing the observed shift to the left
- IV. For higher m_S we have lower $y_t(m_S)$. This makes REWSB harder to achieve
- V. The measured $\{m_h, m_t\}$ values are found in a remarkably narrow window of the parameter space where all the imposed conditions are met for a large range of m_S values

We obtain new and interesting results:

- we reduce the allowed window for SUSY models in the $\{m_h, m_t\}$ plane, also as a **consequence of** the **REWSB** condition.

- remarkably, the measured values still lies in the allowed window, which is **narrow in both** *m_h* and *m*_t directions.

It can be appreciated that this coincidence is perhaps as strong and surprising as for the SM vacuum metastability.