Search for heavy resonances into a boson and a higgs boson (WH,ZH,HH) in the jet + ττ final state

Camilla Galloni (*), Ben Kilminster, Clemens Lange, Alberto Zucchetta

Abstract

A search for a massive resonance decaying into a Higgs boson decaying to τ leptons and another standard model boson decaying hadronically (WH/ZH ightarrow qq $\tau \tau$, HH \rightarrow bb $\tau\tau$) is presented. The search is performed using 35.9 fb⁻¹ of pp collisions at \sqrt{s} =13 TeV recorded with the CMS detector at the LHC.

Signals Н

First search for heavy resonances into a pair of highly energetic bosons:

- H→ τ leptons
- W, Z (V) or H \rightarrow q/b- quarks

ary - τ_μ-τ_h cha

Boosted regime

Final products very collimated

- H $\rightarrow \tau\tau$: challenges in the lepton identification
- V/H → jet : reconstructed through jet substructure

$H \rightarrow \tau \tau$ identification

from the isolation deposits

muons and electrons: the decay products of the identified tau are removed

CMS-DP-2016/038

start from large cone jets

- · 2 subjets (sj) are searched for :

hadronic taus:

- max(m(sj1,sj2))/m(jet) <2/3
- used as seeds for tau reconstruction
 discriminants are applied for tau decay
- mode compatibility and isolation

$V/H \rightarrow iet identification$

The hadronization products of the two quarks are reconstructed as a single merged large cone jet (R = 0.8): 35.9 fb⁻¹ (13 TeV)

- Grooming: removes the soft and large angle emitted radiation inside the jet
- N-subjettiness (τ,): geometric distribution of constituents is analyzed to characterize the tendency of the jet to be composed of N subjets $(\tau_{\alpha} = \tau_{\alpha}/\tau_{\alpha})$
- · Higgs-b-tagging: b-tagging applied to subjets

Event selection

Signal events are selected requiring:

- An isolated tau with p_ > 20 GeV
- An isolated electron, muon or tau A missing momentum > 200 GeV
- T₂₁ HP and LP categorization
- 1 or 2 b-tagged subjets
- · No additional b-tagged jets

Background estimation

Backgrounds are estimated with a hybrid data-simulation approach:

-tt is estimated in dedicated control regions, selected by inverting the b-tagging requirements

τ ₂₁ LP	τ ₂₁ HP	1 b-tagged subjet	2 b-tagged subjets
0.96 ± 0.04	1.06 ± 0.06	1.00 ± 0.06	1.11 ± 0.15

-V+jets is extrapolated from data events in the jet mass sideband regions (SBs), using predictions based on simulations.

Main background contributions:

- V+iets (W+iets, DY, other backgrounds)

Results

No significant excess with respect to the expected background events is observed in

- Main systematic contributions: Background estimation (60%)
- Lepton identification (30%)
- Jet tagging (18%)

CMS-PAS-B2G-17-006

- \rightarrow Expected 95% CL upper limits on the σ -BR for a resonance of spin 0, 1 .or 2.
- → Constrains on the coupling parameters of the V' simplified model

Conclusions

A search for massive resonances decaying into a Higgs bosons decaying to $\boldsymbol{\tau}$ leptons and another boson that can be a W, Z, or a Higgs decaying hadronically is performed in the data collected by CMS in 2016.

The analysis sets 95% C.L. upper limits on the cross section of a spin 0, 1, or 2 resonance decaying to diboson final states ranging from 250 to 6 fb for resonance masses between 900 and 4000 GeV.