ABCNet: Tagging particles with point clouds

Vinicius Mikuni*, Florencia Canelli*

* University of Zurich

Introduction

In High energy physics, graph-based implementations have the advantage of treating the input data sets in the same way they are collected by **collider experiments**. We propose an Attention Based Cloud neural Network called ABCNet. To exemplify the flexibility of the implementation, two crucial problems in particle physics are investigated: **quark-gluon** discrimination and pileup mitigation.

GAP layer

First, define a convolution-like operation invariant to permutations (EdgeConv) using hadrons as vertices [1].

A Graph Attention based Point layer (GAP Layer) [2] is created by connecting the **k-nearest** neighbors of a particle and adding:

- Self attention coefficients: Learn which particles are the most relevant.
- **Neighboring attention coefficients**: Learn which particles have important neighbors.

ABCNet stacks **GAP layers** with **fully connected nodes** to extract information! encodina

Architectures

Quark-gluon tagging

Every hadron collision at the **LHC** produces many charged and neutral hadrons, that are clustered into objects called **jets**. Quark-gluon tagging refers to the task to identify the origin of a jet as quark or gluon initiated.

Pileup mitigation

For every **bunch crossing** at the **LHC**, more than one proton-proton collision can take place. Those additional **soft collisions** are difficult to separate from the events of interest. Use ABCNet to classify each hadron as coming from the primary vertex (PV) or not.

momentum	Quark $\begin{array}{c} 0 \\ 0 \\ -0.2 \\ -0.4 \\ -0.4 \\ -0.2 \\ 0 \\ -0.4 \\ -0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $				than quarks: colour factor
	Acc	AUC	$1/\epsilon_B \; \left(\epsilon_S = 0.5 ight)^{*}$	$1/\epsilon_B~(\epsilon_S=0.3)$	Parameters
ResNeXt-50	0.821	0.960	30.9	80.8	1.46M
P-CNN	0.827	0.9002	34.7	91.0	348k
PFN	-	0.9005	$34.7 {\pm} 0.4$	-	82k
ParticleNet-Lite	0.835	0.9079	37.1	94.5	26k
ParticleNet v2	0.840	0.9116	$39.8{\pm}0.2$	$98.6 {\pm} 1.3$	366k
ABCNet	0.840	0.9126	$42.6{\pm}0.4$	$118.4{\pm}1.5$	230k

let transverse

Reweight each particle's 4-momentum by the ABCNet probability output. Better jet mass **resolution** than common methods

with **<NPU> = 20 or 140**. Test the performance on **different NPU**. **Better performance everywhere!**

more spread

ain.

Graph implementations have the advantage of using particle collisions in the same fashion as they are detected. With the **high luminosity LHC**, each collision will produce ~O(1000) particles. Using attention mechanisms, we can filter the relevant particles for each classification problem, while providing a simple way to **visualize the learning process**. In both problems presented, ABCNet excels other available implementations.

What could be used for: Searches for heavy resonances, flavour tagging, particle track reconstruction, ECAL shower reconstruction, unsupervised searches, and more!

Bibliography

[1] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein and J. M. Solomon, Dynamic graph CNN for learning on point clouds, CoRR abs/1801.07829 (2018) [2] C. Chen, L. Z. Fragonara, and A. Tsourdos, GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud.

