

zhang@physik.uzh.ch

A 100 nm thick superconducting WSi film with $T_{\rm C} \sim 5$ K was prepared by magnetron sputtering technique. The narrow stripes (~ 900 nm) were then patterned by electron-beam lithography with hydrogen silsesquioxane (HSQ) resist and etched by reactive ion etching in SF₆. The experiment has been carried out in a Janis He-3 bath cryostat, and the X-ray photons come from an X-ray tube with a W target from Oxford Instruments.

Comparison with previous X-SNSPDs

Sample	T _c (K)	w (nm)	size (µm²)	CPSPSM (cps)	rise time (ps)	hotspot (nm)	I _L /I _c	I _{th} /I _c
Nb	8.40	360-410	131×55	0.2	250	420	5.5% @1.75K	
TaN-A	6.70	275-340	35×33	2.1	750	540	52% @1.85K	8% @1.85K
TaN-B	7.00	1800-1900	66×119	1.3	910		32% @1.85K	
W _{0.8} Si _{0.2}	4.97	920	41.6×28	2.7	400	874	54% @4.8K	5% @1.8K

Summary and outlook

Compared with other superconducting materials for SNSPD fabrication, WSi based detectors have a better detection efficiency due to the relatively high X-ray photon absorption. Though the critical temperature is lower than in other superconducting films used for detector fabrication, the WSi detector can be operated just below its critical temperature ($T_{\rm C} \sim 5$ K), above the boiling point of liquid helium (~ 4 K).

Xiaofu Zhang, Qiang Wang, and Andreas Schilling, AIP Advances 6, 115104 (2016)