Search for a low-mass ditau resonance with the CMS detector using 2016 data

Izaak Neutelings (izaak.neutelings@uzh.ch), Yuta Takahashi & Ben Kilminster

Abstract A search for a 30 GeV particle which decays into two leptons and is produced in association with a b quark and a light quark, using proton-proton collision data at 13 TeV that was collected by the CMS detector. This is a phase space that has not yet been probed by other analyses. A signal model based on a vector-like quark model with one 28 GeV particle decaying into two tau leptons is considered.

Motivation: 30 GeV bump?

An excess was found in electron-positron collision data at ALEPH.

- · 30 GeV in the invariant mass distribution of a muon pair
- · in association with jets originating from bottom quarks
- no significant excess was found for events with a pair of electrons.

Tau reconstruction

arXiv:1510.07488

Tau lepton decay before they can be measured.

CMS uses the **Hadron Plus Strip** (HPS) algorithm for hadronically-decayed taus.

- charged hadrons like π^\pm are identified by their track
- π⁰ → γγ is are identified as a "strip": energy clusters in the ECAL of some maximum Δφ, Δη size

Tau pair mass

This analysis selects tau pairs that decay to $\mu\tau_{\text{h}}$ or $e\tau_{\text{h}}$ pairs.

- missing information due to neutrinos
- \Rightarrow find most likely $m_{\tau\tau}$ using all the tau decay candidates and missing energy information

Signal: VLQ

The ALEPH excess might point to a new particle that can be observed at the LHC.

- we consider vector-like quark (VLQ) model $qb \to q'B' \ \, where \ \, B' \to bX \to b\tau\tau$
- VLQs can solve theoretical problems such as the hierarchy problem
- our signal process will have one b quark and one forward-scattered light quark

Background estimation

Processes like top quark pair production, Drell Yan $(Z/\gamma^* \to \tau\tau)$ and QCD can be reconstructed as having a tau pair. Most samples can be reliably estimated with Monte Carlo (MC) simulation, however, QCD is estimated using data-driven control regions

Selections: two jet categories

The signal process has a $\tau\tau$ bj signature, where one jet is typically forward. Therefore, we divide up our final jet selections to increase sensitivity:

- 1. one **central b jet** ($|\eta|$ <2.4) plus at least one **forward jet** ($|\eta|$ >2.4)
- 2. one **central b jet** ($|\eta|$ <2.4) plus only one other **central jet** ($|\eta|$ <2.4)

Results & Conclusions

Expected upper limits on the cross section times branching ratio $\sigma^* BR(X \to \tau \tau)$ have been derived.

- $\mu \tau_h$ channel is more senstitive than the $e \tau_h$, due to more efficient and precise reconstruction of the muon
- the jet selections with a forward jet (1b1f) have better upper limits that those with only central ones (1b1c), as the 1b1f selections are more signal-like

We are looking forward to unblind our results soon.

