

LHCb Tracker Turicensis

Michele Atzeni, Elena Graverini, Andrea Mauri, Olaf Steinkamp, Barbara Storaci

The LHCb detector

[JINST 3 (2008) S08005]

- single arm spectrometer designed for precision measurements in decays of particles containing heavy quarks
- fully instrumented in the forward region $(2 < \eta < 5)$
- primary vertex resolution: $\sigma_{xy} \sim 15 \ \mu m$, $\sigma_z \sim 80 \ \mu m$
- momentum resolution: $\Delta p/p \sim 0.5 1\%$
- particle identification: excellent K/ π /p separation eg. K identification ϵ = 90 % with < 5 % π mis-identification

The Tracker Turicensis

- silicon-microstrip detectors with 10 40 cm long readout strips, 500 μ m strip pitch
- four detection layers, 128 detector modules, 896 silicon sensors, 143'360 readout channels
- improves momentum resolution for charged particles
- increases efficiency for reconstruction of long-lived neutral particles
- designed, built, commissioned, installed, operated by UZH group
- installed in LHCb in 2009, to be replaced by new Upstream Tracker during LHCb upgrade in 2019/2020

Efficiency

Algorithm:

- 1. mask the layer under study
- 2. run the pattern recognition & track fit
- 3. reuse the removed cluster to calculate the performance in that sector

 hit efficiency: fraction of found hits in a search window of 240 μm

99.3 % of 143'360 readout channels fully operational

MPV [ADC value]

-20

Resolution

• hit resolution: width of the residual distribution

High radiation environment

- we expect $\varphi \sim 7\ 10^{14}\ cm^{-2}$ over the lifetime of the experiment
- fundamental to monitor radiation damage of the detector

Monitoring radiation damage

- $V_{depl} = q/2\epsilon\epsilon_0 n_{eff} D^2$
- n_{eff} changes with radiation damage
- charge collection efficiency as a function of V_{bias} allows to estimate V_{depl}

Time evolution

- variations of V_{depl} are monitored as a function of time
- results in agreement with "Hamburg model" predictions [1]
- no limitation due to radiation damage is expected until the end of 2018

[1] M. Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties