

An Absolute Microscopic Calibration

of a Dual-Phase Xenon TPC

Universität Zürich^{∪zн}

Laura Baudis, Patricia Sanchez-Lucas, <u>Kevin Thieme</u>

LBNL INPA Seminar (online), 8th October 2021

xenoscope.org

A Measurement of the Mean Electronic **Excitation Energy of Liquid Xenon**

University of Zurich

arXiv:2109.07151

Applications of Liquid Xenon Detectors

Direct Dark Matter Detection

- WIMPs, ALPs, ...
- Dual-phase Time Projection Chambers (TPCs): XENONnT, LUX-ZEPLIN, PandaX, DARWIN
- Single-phase: XMASS

Neutrino Physics

- $0\nu\beta\beta$ decay: EXO-200, nEXO, current generation TPCs and DARWIN
- Low-energy solar neutrinos, supernova neutrinos, $CE\nu NS$: current generation TPCs and DARWIN

E. Aprile and T. Doke Rev. Mod. Phys. 82 (2010), 2053

Kevin Thieme

Cold head of Xenoscope L. Baudis et al. JINST 16 (2021) P08052

Other

¹²⁴Xe ECEC: XENON1T

Rare Decays

 $\pi \rightarrow \mu \nu \gamma$: RAPID

• $\mu \rightarrow e\gamma$: MEG

Medical Imaging: SPECT, PET (e.g. XEMIS prototypes, NIM A 912 (2018) 329)

Gamma-Ray Astrophysics: TPC as Compton telescope on balloon (LXeGRIT prototype, New Astron. Rev. 48 (2004) 257)

Calorimetry in HEP: Prototypes (NIM A 234 (1990) 439, NIM A 451 (2000) 427)

Particle Interaction in Liquid Xenon

Energy deposition -> Scintillation (direct + recombination) + Ionisation + Heat Excitation

Kevin Thieme

Dual-Phase Xenon Time Projection Chamber

Kevin Thieme

ER/NR discrimination based on S1/S2 ratio

Mean Electronic Excitation Energy of LXe

- Sum of excitation quanta proportional to energy deposition, scintillation and ionisation signals are anti-correlated
- Model LXe excitation with *work function* W average energy to produce a quantum (e⁻, γ) in an (ER) interaction of energy E

#γ from direct excitation and recombined e-

- Mean value, we do not subdivide into W for scintillation and W for ionisation
- W defines the recombination-independent microscopic absolute energy scale of LXe detectors

<-> Unlike relative calibration w.r.t. energy lines from calibration sources

 $E = (n_{\gamma} + n_{e^{-}})W$

Kevin Thieme

#e⁻ extracted

https://i.redd.it/1mo8ju8i3my51.png

LBNL INPA Seminar (online), 8th October 2021

Assumption:

e--ion-recombination yields 1 photon

Literature Values of W

Widely used value measured by E. Dahl [1]: $W = (13.7 \pm 0.2) eV$

➡ With a ⁵⁷Co source at ~100 keV

- Small TPC with PMTs operated in single and dual phase mode
- Absolute charge yield calibration with an amplifier on the anode
- Consistent with former measurements
- 2 years ago EXO-200 reported on a measureme with \mathcal{O} (1 MeV) gamma sources [2]:

 $W = (11.5 \pm 0.1 (stat.) \pm 0.5 (syst.)) eV$

- **Single** phase detector with wire charge and LAAPD light readout
- Absolute charge calibration of amplifier on readout plane

Kevin Thieme

d	W (eV)	W_i (eV)	Particle type	Year	F
	_	15.6 ± 0.3	<i>e</i> ⁻ (976 keV)	1975	[
	_	13.6 ± 0.2	γ (662 keV)	1979	[
	14.7 ± 1.5	_	e ⁻ (976 keV)	1990	[30
ent	_	9.76 ± 0.70	<i>e</i> ⁻ (0.02–3 GeV)	1992	[
	13.8 ± 0.9	_	<i>e</i> ⁻ (976 keV)	2002	[
	13.46 ± 0.29	_	γ (122 keV)	2007	[
	13.7 ± 0.2	_	γ (122 keV, 136 keV)	2009	[
	14.0	_	γ (164 keV)	2010	[
	13.7 ± 0.4	—	Compilation	2011	
	_	16.5 ± 0.8	γ (122 keV)	2011	E
	_	14.30 ± 0.14	Compilation	2014	[

Table taken from [2], references can be found therein

[1] C. E. Dahl, PhD Thesis, Princeton University (2009) [2] EXO-200 Collaboration, Phys. Rev. C 101, 065501 (2020)

What we have in our lab in Zurich...

Kevin Thieme

Xurich II TPC with SiPMs

- Small dual-phase TPC designed to study low-energy interactions
- 2 × 2 S13371 VUV-4 MPPCs from Hamamatsu on ×10 preamplifier board in the top array – 16 channels
- 2-inch R6041-06 PMT from Hamamatsu at the bottom
- 10 kV/cm extraction field (5.4 kV/cm in LXe)
- Up to 1 kV/cm drift field

L. Baudis et al., EPJ C 80, 477 (2020)

Kevin Thieme

SiPM Performance

- Crosstalk probability: (2.2 ± 0.1) %

Kevin Thieme

Kevin Thieme

LBNL INPA Seminar (online), 8th October 2021

Characterisation with Internal Sources

•	${}^{37}Ar T_{1/2} =$	(35.01±0.02)	days

37**Ar**

•	Electron	capture: e	} ⁻ +	³⁷ Ar	->	37 C
---	----------	------------	--------------	------------------	----	-------------

e

	Decay mode	Energy release [keV]	Branching ratio
EPJ C 80, 477 (2020)	K capture	2.8224	90,17 %
	L capture	0.2702	8,90 %
0000	M capture	0.0175	0,93 %

- Deploy a ⁸³Rb source
- with intermediate $T_{1/2} = 155.1$ ns

Kevin Thieme

^{83m}Kr Calibration

³⁷Ar Source Production and Introduction

- Production from natural Ar via thermal neutron capture on ${}^{36}Ar(n, \gamma)$ with ~5 barn
- Produced at Swiss Spallation Neutron Source (PSI Villigen): 10¹³ neutrons cm⁻²s⁻¹

Isotope*	Abundance [%]	T _{1/2}	Decay mod	le Daugh
³⁶ Ar	0.334	_	stable	_
³⁷ Ar	syn	35.01 d	3	37 C
³⁸ Ar	0.063	-	stable	_
³⁹ Ar	trace	268 y	β-	³⁹ K
⁴⁰ Ar	99.604	_	stable	-
⁴¹ Ar	syn	109.6 min	β-	41 K

Kevin Thieme

- Identified K- and L-shell population

Kevin Thieme

Determine: Solution: High-statis data in dua drift fields W-value ?

Kevin Thieme

LBNL INPA Seminar (online), 8th October 2021

High-statistics keV-scale calibration data in dual-phase mode at different

Measurement Principle

• Rewriting $E = (n_{\gamma} + n_{e^-})W$ with the detector gains $g1 := S1/n_{\gamma}$, $g2 := S2/n_{e^-}$:

Problem: How to determine g2 in an absolute way? When a single electron is extracted to the gas phase: $g_{2}=S_{2}$ Idea:

Kevin Thieme

Single Electron Gain Measurement

- For single electron extraction (SE): g2=S2
- Highly abundant, quantised process with a rate of ~17 Hz
- Origin: delayed extraction, trapped charges, cathode emission, ³⁷Ar M-shell (max. 0.5 %)
- Detection and S1/S2 identification efficiencies relevant for small S2s

 \Rightarrow DPE/crosstalk and efficiency corrected: $g_2 = (29.84 \pm 0.01 (stat.) \pm 0.40 (syst.)) PE/e-$

Kevin Thieme

Anti-Correlation Fit Parameters

180 **Split Kr-lines** ³⁷Ar, 2.82 keV 1600 S2 total charge yield [PE/keV] ^{83m}Kr, 9.41 keV ⁿKr, 32.15 keV 1400 Various drift fields 1200 1000 800 600 g2/g1 = 289.5 ± 0.1 (stat.) +11.3 (syst.) 400 S2/E = (2.596 \pm 0.001 (stat.) $^{+0.052}_{-0.034}$ (syst.)) PE/eV 200 [∟] 3 8 9 S1 total light yield [PE/keV] → DPE/crosstalk corrected: $g2/g1 = 289.5 \pm 0.1 (stat.)^{+11.3}_{-71} (syst.)$,

LBNL INPA Seminar (online), 8th October 2021

Kevin Thieme

Use anti-correlation fit for 2.82 keV, 9.41 keV, 32.15 keV, 41.56 keV at all available drift fields

(from 80 (484) to 968 V/cm for ³⁷Ar (^{83m}Kr)) -> better accuracy for higher separation in S1/S2

17

 $S2/E = (2.596 \pm 0.001 (stat.)^{+0.052}_{-0.034} (syst.)) PE/eV$

Systematic Uncertainties

Kevin Thieme

Photosensor Effects • Well-known for PMTs, typically ~20 % [3–5]

- Single-cell output should be the same?
- Well-known for SiPMs: crosstalk among neighboring cells -> photon crosses trenches, 2.1 % at 4 V OV and 3.3 % at 5 V OV [6]
- But: crosstalk measured as ratio of 1.5 PE and 0.5 PE threshold from DC data -> excitations from the bulk, not external -> Any difference?
- Single photon source not available -> position cut doesn't work in small TPC -> Use combinatorial method instead

Kevin Thieme

SiPM Double Photoelectron Emission **e**⁻ **e**⁻

[3] C.H. Faham et al., JINST 10 P09010 (2015) [4] P. López Paredes et al., Astropart. Phys 102 56–66 (2018) [5] E. Aprile et al., Phys. Rev. D 99, 112009 (2019) [6] L. Baudis et al. JINST 13 P10022 (2018)

photosensor Effects p_i...mean light fraction of sensor i for FV

- k_i...number of hits in sensor i
- q...DPE probability \bullet
- Consider events with 3 detected hits -> 3 cases: \bullet

$$k_{i} = 3, k_{j} = 0 \forall j \neq i$$

$$3\gamma \rightarrow 3 \text{ hits or } 2\gamma \rightarrow 3 \text{ hits or } 1\gamma \rightarrow 3 \text{ hits}^{*}$$

$$\Rightarrow \text{ *NNLO}$$

$$\Rightarrow \text{ not accessible, because very unlikely}$$

$$\mathbf{III. \ k_{i} = k_{l} = k_{m} = 1, k_{j} = 0 \forall j \neq l \neq m \neq i$$

$$3\gamma \rightarrow 1 + 1 + 1 \text{ hits}$$

$$\Rightarrow N^{\text{III}} = N_{3\gamma} \cdot \sum_{i=0}^{15} \sum_{j \neq i} p_{i} p_{j} (1 - p_{i} - p_{j})$$

Kevin Thieme

LBNL INPA Seminar (online), 8th October 2021

$$k_{i} = 2, k_{l} = 1, k_{j} = 0 \forall j \neq l \neq i$$

 $3 \gamma \rightarrow 2 + 1 \text{ hits} \text{ or } 2\gamma \rightarrow 2 + 1 \text{ hits}$

$$N^{\text{II}} = N_{3\gamma} \cdot 3 \sum_{i=0}^{15} p_{i}^{2} (1 - p_{i}) + N_{2\gamma}^{2\text{s}} \cdot 2q(1 - p_{i})$$

 $N_{3\gamma}$...# events with 3 initial photons that are all detected

 $N_{2\nu}^{2s} = \frac{N^{2h,2s}}{(1-\alpha)^2}$...# events with 2 initial photons detected by two different sensors $N^{2h,2s}$...# events with total 2 hits, one in each sensor

Kevin Thieme

waveform has fallen below half the maximum height of the two peaks

Split at local intermediate minimum when

DAQ/Processing Effects

Kevin Thieme

LBNL INPA Seminar (online), 8th October 2021

Data-driven approach based on well-separated peaks ullet $(> 1.2 \ \mu s) \rightarrow shift together up to the point where$ splitting is just about possible

All of this finally yields...

Kevin Thieme

With global approach: W = 11.

➡ Local approach yields mean values of 11.1 – 11.6 eV depending on evaluation point (energy)

- Local approach yields slightly higher uncertainties Hybrid photosensor arrangement only has limited impact due to less direct nature of the approach
- Error dominated by systematics, and very competitive compared to former measurements
- Treated systematics from TPC, photosensor, DAQ and processing effects

W-value Result

$$5^{+0.2}_{-0.3}$$
 (syst.) eV

In agreement with the EXO-200 value (@ ~keV):

$$W = (11.5 \pm 0.1 (stat.) \pm 0.5 (syst.)$$

Incompatible with value from E. Dahl of $(13.7 \pm 0.2) \text{ eV} \rightarrow 16\%$ higher

A lower W-value...

...does not affect

...rescales

...implies

the macroscopic energy scale (= translation from S1 & S2 signals to energy deposition) of LXe detectors -> fixed by calibration sources

absolute response to excitation quanta)

a higher Fano factor:

- Non-Poissonian fluctua
- Fano limit of energy res

•
$$\sigma_E = \sqrt{FEW}$$

LBNL INPA Seminar (online), 8th October 2021

Kevin Thieme

the detector gains g1 & g2 of LXe detectors to lower values (-> reduced

ation in
$$n := n_{\gamma} + n_{e^-}$$
: $\sigma_n = \sqrt{Fn}$
solution: $\frac{\sigma_E}{E} = \frac{\sigma_n}{n}$

n

Universität Zürich^{∪zн}

darwin.physik.uzh.ch xenoscope.org

Kevin Thieme

Thank you for listening!

arXiv:2109.07151

twitter.com/darwinobserv

Backup Slides

LBNL INPA Seminar (online), 8th October 2021

Kevin Thieme

Follow E. Dahl's thesis [1]:

The total number of scintillation photons is the sum of direct excitons and recombined ions,

energy E, we define $W_q := \frac{E}{N_{ion}}$

recombination, respectively. The number of extracted electrons is given by

 $N_a =$

Combining the equations above, we find the recombination independent sum $E = (N_{\alpha})$

produce a quantum – either an electron or a photon. The definitions yield the well-known expression

E = (

Kevin Thieme

Derivation

- $N_{\rm ph} = aN_{\rm ex} + brN_{\rm ion},$
- where r is the recombination fraction and a and b are efficiencies to produce scintillation photons. For a recoil

and
$$W_{\rm ph} := \frac{E}{aN_{\rm ex}+bN_{\rm ion}},$$

i.e. the W-values corresponding to the total charge yield with zero recombination and the total light yield with full

$$(1 - r)N_{ion}$$
.

$$(h_{\mu}+rac{N_{\mathrm{ph}}}{b})bW_{\mathrm{ph}}.$$

We identify $n_{e^-} = N_q$, $n_{\gamma} = N_{\rm ph}/b$ and $W = bW_{\rm ph}$. W can be interpreted as the average energy needed to

$$(n_{e^-}+n_{\gamma})W.$$

Lindhard factor (energy dependent)

- ER -> E completely converted in electronic excitation lacksquare
- NR -> Elastic collisions with other nuclei (quenching) lacksquare
- $N_{\rm ex}/N_{\rm ion}$ larger for NR than ER -> mean W would be lower (less energy needed for exciton than ion) -> However, difference can be absorbed in \mathscr{L}

 $E = \mathscr{D}^{-1}(n_{\gamma} + n_{e^{-}})W$

- Isolate (uncorrelated) M-shell events with time veto -> converges to right branching ratio M/L
- background

Kevin Thieme

³⁷Ar Results II

Light and Charge Yield at Low Energies

LBNL INPA Seminar (online), 8th October 2021

Kevin Thieme

L.W. Goetzke et al., Phys. Rev. D 96, 103007 (2017)

Liquid Xenon Purity and TPC Geometry

TPC Effects

Kevin Thieme

LBNL INPA Seminar (online), 8th October 2021

S2/1000 [PE

Mean

S2 change from linear interpolation between 1.5 mm and 2.125 mm

- Assumed constant at 2 mm during the runs (4 mm between gate and anode)
 - Temperature range liquid: 0.4 K
 - Pressure range: 0.05 bar
 - Recirculation rate range: 0.1 slpm
- Leveling procedure gives rise to 125 µm change in liquid level among runs <-> 2.5 % in S2 (one major devision of motion feedthrough)

TPC Effects

S2-Gain – Liquid Level

Kevin Thieme

- Extraction efficiency at 10 kV/cm (5.4 kV/cm in LXe) is assumed to be 100 % [4,5]
- W-value would only be lower for lower efficiencies

Electron Extraction Efficiency

[7] B. N. V. Edwards et al. JINST 13, no. 1, P01005 (2018)

[8] J. Xu et al., Phys. Rev. D 99, no. 10, 103024 (2019)

Hybrid Photosensor Configuration

- Photosensor Effects Rewrite W for three points a, b, c in S1-S2 space and express top by bottom contributions (γ s for S2s and $\overline{\gamma}$ s for S1s):
 - $\rightarrow \gamma$ and $\overline{\gamma}$ depend on geometry, reflections, ... that influence the top/ bottom light collection
 - $\rightarrow \eta$ s are photosensor efficiencies and expected to be energy and time independent for unchanged thermodynamical conditions
 - W is insensitive to overall timeconstant, and energy- and sensorindependent factor ϕ in g1, g2, S1, S2 like ADC-to-PE
 - \Rightarrow But $\gamma \neq \gamma_a \neq \gamma_b \neq \gamma_c$ (same for \neg) -> η s do have an impact!

Kevin Thieme

Energy [keV]			
se			
2.82			
9.41			
32.15			
41.56			

 $\phi \cdot S2b_c \cdot (\eta_{PMT} + \eta_{SiPM}\gamma_c)$

 $\phi \cdot \frac{S2b_a}{E_a} (\eta_{\text{PMT}} + \eta_{\text{SiPM}}\gamma_a) - \phi \cdot \frac{S2b_b}{E_b} (\eta_{\text{PMT}} + \eta_{\text{SiPM}}\gamma_b)}{E_b} \cdot \phi \cdot S1b \cdot (\eta_{\text{PMT}} + \eta_{\text{SiPM}}\tilde{\gamma}) + \phi \cdot S2b \cdot (\eta_{\text{PMT}} + \eta_{\text{SiPM}}\gamma)$ $\overline{\phi \cdot \frac{\text{S1b}_b}{E_b}}(\eta_{\text{PMT}} + \eta_{\text{SiPM}}\tilde{\gamma}_b) - \phi \cdot \frac{\text{S1b}_a}{E_a}(\eta_{\text{PMT}} + \eta_{\text{SiPM}}\tilde{\gamma}_a)$

Photosensor Gain

- PMT: (3.76 ± 0.06) × 10⁶
- SiPM: $(3.12 \pm 0.01) \times 10^{6}$
- 1σ assumed as variation in

time

SiPM Gain Stability

Photon Detection Efficiency

• VUV-4 SiPM:

- PDE = 24 % (Hamamatsu Photonics)
- PDE = 9.9–17.6 % at 3.3–3.8 V OV (nEXO

[9–10]) -> we have > 4 V OV

- 2-inch PMT:
 - QE = 30 % (Hamamatsu Photonics)
 - QE = 28 % [11]
 - CE = ~70 % (Hamamatsu Photonics)
 - -> PDE = 19.6-21 %
- Very similar, max. percent-level difference

Kevin Thieme

@175–178 nm

[10] P. Nakarmi et al., JINST 15 P01019 (2020)

[11] L. Arazi et al., JINST 8 C12004 (2013)

Infrared Sensitivity

- GXe scintillates in the IR at ~1300 nm with VUV-comparible yield [13–14]
- LXe IR very poor light yield mostly below 1200 nm [12–13]
- -> Only S2 can contain significant IR radiation
- VUV-4 SiPM:
 - Silicon band gap sets cutoff at ~1100 nm
- 2-inch PMT:

Kevin Thieme

- Insensitive beyond 1000 nm
- -> IR radiation negligible

[12] G. Bressi et al., Nucl. Instrum. Methods Phys. Res A 440 254–257 (2000) [13] G. Bressi et al., Nucl. Instrum. Methods Phys. Res A 461 378–380 (2001) [14] S.Belogurov et al., Nucl. Instrum. Methods Phys. Res A 452 167–169 (2000) [15] J. Schrott et al., arXiv:2108.08239 (2021)

10-1	[nm ⁻¹]
	₹
	Densi
10-2	Spectral

Systematic variation of fitting interval for 2.82 keV population

→
$$\Delta S1 = ^{+0.1}_{-0.6} PE$$

→
$$\Delta S2 = ^{+8}_{-30} PE$$

Kevin Thieme

(not DPE/crosstalk-scaled)

LBNL INPA Seminar (online), 8th October 2021

Fitting Errors

Bottom-PMT Only

- Check consistency using PMT-only information
- Doke-plot is shallower due to greater S1- and lower S2-yield in the liquid
- Splitting error is more pronounced -> use 41.56 keV line (but does not change slope anyways)
- Why's that? -> AFT cut incorporated for Ar- & Kr-lines!
- SE population has very low AFT-fractions (single photon regime) -> higher PMT charge yield
- AFT cut has bad acceptance for SE
- Can generate any PMT-based g2 & W by applying different AFT cuts to SE but total g2 & W always stay constant!

40