Global Fit to Modified Neutrino Couplings and the V_{us}/V_{ud} Problem Antonio Coutinho¹, Andreas Crivellin^{1,2}, Claudio Andrea Manzari^{1,2} ¹Paul Sherrer Institute, ²University of Zurich Figure I. Tension in the V_{us} measurements from 3 different processes: $K \to \pi \mu \nu$, $\frac{K \to \mu \nu}{\pi \to \mu \nu}$ and superallowed β transitions #### 1. Abstract Modified couplings of neutrinos to SM gauge bosons can be generated via higher dimensional operators. The modified couplings enter directly in $Z \to \nu \nu$ and $W \to \ell \nu$ and indirectly in $Z \to \ell^+ \ell^-$. In addition they enter in all low energy observables involving neutrinos, like τ , μ and meson decays. Here, K and π decays are the most relevant due to their exquisite experimental and theoretical precision, while the uncertainties in B are still too large to give relevant bounds. There are, not only, stringent bounds from $K \to \mu\nu/K \to e\nu$ and $\pi \to \mu\nu/\pi \to e\nu$ but also interesting discrepancies between different determinations of V_{us} and V_{ud} from K decays and super-allowed β decays. In particular there is a tension between the following measurements: - $V_{\mu\varsigma}$ from $K \to \pi \ell \nu$, - V_{us}/V_{ud} from $K \to \ell \nu/\pi \to \ell \nu$, - V_{us} from $0^+ 0^+$ transitions, as shown in Figure I. From this discussion it is clear that a global fit to all these data, reported in Table I, is required to asses consistently the impact of modified neutrino couplings. | Observable | Measurement | |---|------------------------| | $M_W [{ m GeV}]$ | 80.379 ± 0.012 | | $N_{\nu}^{\text{exp}} = (1 + \varepsilon_{ee})^2 + (1 + \varepsilon_{\mu\mu})^2 + (1 + \varepsilon_{\tau\tau})^2$ | 2.9840 ± 0.0082 | | $\Gamma_Z [{ m GeV}]$ | 2.4952 ± 0.0023 | | $\sigma_h^0 [\mathrm{nb}]$ | 41.541 ± 0.037 | | g_V^ℓ | -0.03783 ± 0.00041 | | g_A^ℓ | -0.50123 ± 0.00026 | | $\frac{K \to \mu\nu}{K \to e\nu} \simeq 1 + \frac{1}{2}\varepsilon_{\mu\mu} - \frac{1}{2}\varepsilon_{ee} $ | 0.9978 ± 0.0020 | | $\frac{\pi \to \mu \nu}{\pi \to e \nu} \simeq 1 + \frac{1}{2} \varepsilon_{\mu \mu} - \frac{1}{2} \varepsilon_{ee} $ | 1.0021 ± 0.0016 | | $\frac{\tau \to \mu \nu \bar{\nu}}{\tau \to e \nu \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\mu \mu} - \frac{1}{2} \varepsilon_{ee} $ | 1.0018 ± 0.0014 | | $\frac{K \to \pi \mu \bar{\nu}}{K \to \pi e \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\mu\mu} - \frac{1}{2} \varepsilon_{ee} $ | 1.0010 ± 0.0025 | | $\frac{W \to \mu \bar{\nu}}{W \to e \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\mu\mu} - \frac{1}{2} \varepsilon_{ee} $ | 0.996 ± 0.010 | | $\frac{\tau \to e \nu \bar{\nu}}{\mu \to e \bar{\nu} \nu} \simeq 1 + \frac{1}{2} \varepsilon_{\tau \tau} - \frac{1}{2} \varepsilon_{\mu \mu} $ | 1.0011 ± 0.0015 | | $\frac{\sigma \to \pi \nu}{\pi \to \mu \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\tau \tau} - \frac{1}{2} \varepsilon_{\mu \mu} $ | 0.9962 ± 0.0027 | | $\frac{\tau \to K\nu}{K \to \mu\bar{\nu}} \simeq 1 + \frac{1}{2}\varepsilon_{\tau\tau} - \frac{1}{2}\varepsilon_{\mu\mu} $ | 0.9858 ± 0.0070 | | $\frac{W \to \tau \bar{\nu}}{W \to \mu \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\tau \tau} - \frac{1}{2} \varepsilon_{\mu \mu} $ | 1.034 ± 0.0013 | | $\frac{\tau \to \mu \nu \bar{\nu}}{\mu \to e \nu \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\tau \tau} - \frac{1}{2} \varepsilon_{ee} $ | 1.0030 ± 0.0015 | | $\frac{W \to \tau \bar{\nu}}{W \to e \bar{\nu}} \simeq 1 + \frac{1}{2} \varepsilon_{\tau \tau} - \frac{1}{2} \varepsilon_{ee} $ | 1.031 ± 0.0013 | | $ V_{us}^{K\to\mu\nu} \simeq V_{us}^{\mathcal{L}}(1-\frac{1}{2}\varepsilon_{ee}) $ | 0.2255 ± 0.0007 | | $ V_{us}^{K_L \to \pi \mu \nu} \simeq V_{us}^{\mathcal{L}}(1 - \frac{1}{2}\varepsilon_{ee}) $ | 0.2233 ± 0.0007 | | $ V_{us}^{K^{\pm} \to \pi \mu \nu} \simeq V_{us}^{\mathcal{L}}(1 - \frac{1}{2}\varepsilon_{ee}) $ | 0.2238 ± 0.0012 | | $ V_{us}/V_{ud} ^{K/\pi \to \mu\nu}$ | 0.2313 ± 0.0005 | | $ V_{ud}^{\beta} _{\text{CMS}} \simeq \sqrt{1 - V_{us}^{\mathcal{L}} ^2} 1 - \frac{1}{2} \varepsilon_{\mu\mu} $ | 0.97389 ± 0.00018 | | $ V_{ud}^{\beta} _{\text{SGPR}} \simeq \sqrt{1 - V_{us}^{\mathcal{L}} ^2} 1 - \frac{1}{2} \varepsilon_{\mu\mu} $ | 0.97370 ± 0.00014 | Table I. Observables of the fit ## 2. Coupling Modifications At the dimension 6 level, there is just one operator which only modifies the couplings of gauge bosons to neutrinos but does not affect other couplings [3,4]: $$\bar{L}_i \gamma_\mu \tau^I L_j H^\dagger i \tau^I H$$ $\tau^I = (1, -\sigma_1, -\sigma_2, -\sigma_3)$ where σ 's are the Pauli matrices. The Wilson coefficient of this operator leads to modifications of neutrino couplings to gauge bosons, parametrised as follows: $$\frac{-ig_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} \Rightarrow \frac{-ig_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} \left(\delta_{ij} + \frac{1}{2} \varepsilon_{ij} \right)$$ $$\frac{-ig_2}{2} \bar{\nu}_i \gamma^{\mu} P_L \nu_j Z_{\mu} \Rightarrow \frac{-ig_2}{2} \bar{\nu}_i \gamma^{\mu} P_L \nu_j Z_{\mu} \left(\delta_{ij} + \varepsilon_{ij} \right)$$ | Parameter | Prior | |--------------------------------------|-----------------------------------| | $G_F^{\text{exp}} [\text{GeV}^{-2}]$ | $1.1663787(6) \times 10^{-5}$ | | lpha | $7.2973525664(17) \times 10^{-3}$ | | $\alpha_s(M_Z)$ | $0.1181(11) \times 10^{-3}$ | | M_Z [GeV] | 91.1876 ± 0.0021 | | $m_H [{ m GeV}]$ | 125.16 ± 0.13 | | $m_{t,\text{pole}} [\text{GeV}]$ | 173.08 ± 0.33 | | $V_{us}^{\mathcal{L}}$ | 0.225 ± 0.010 | | $arepsilon_{ee}$ | 0.00 ± 0.05 | | $arepsilon_{\mu\mu}$ | 0.00 ± 0.05 | | $arepsilon_{ au au}$ | 0.00 ± 0.05 | Table II. Parameters of the fit $\varepsilon_{11} = -0.0031^{+0.0007}_{-0.0007}$ Figure II. ε_{ee} vs $\varepsilon_{\mu\mu}$ Fit ## 3. Analysis & Results We perform the analysis in the Bayesian framework. To accomplish such endeavour, we have adopted the publicly available HEPfit package [5], whose Markov Chain Monte Carlo determination of posteriors is powered by the Bayesian Analysis Toolkit (BAT). Employing The Metropolis-Hastings algorithm implemented in BAT to sample from the desired distribution, our MCMC runs involved 6 chains with a total of 2 million events per chain. We find more than 4 sigma preference for NP in neutrino couplings to SM gauge bosons. This, can be seen in Figure II and Figure III, and strongly motivates the ## Contact Claudio Andrea Manzari UZH & PSI Email: <u>claudioandrea.manzari@physik.uzh.ch</u> Phone: +393472693146 ## References - 1. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D100, 073008 (2019), arXiv:1907.06737. - C. Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D100, 013001 (2019), arXiv:1812.03352. 3. W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621(1986). - B. Grzadkowski, M. Iskrzynski, M. Misiak, and J.Rosiek, JHEP 10, 085 (2010), arXiv:1008.4884 - 5. J. de Blas et al., (2019), arXiv:1910.14012.