

LHCb Upgrades

Carlos Abellan, Irene Cortinovis, Vadym Denysenko, Guillermo Loustau, Olaf Steinkamp, Zhenzi Wang [olafs@physik.uzh.ch]

LHCb Detector at the Large Hadron Collider

- single arm spectrometer
 designed for precision measurements in decays of particles
 containing heavy quarks
- fully instrumented in the forward region ($2 < \eta < 5$)
- momentum resolution: $\Delta p/p = 0.5-1\%$
- particle identification: excellent K/ π /p separation kaon ID
- very flexible trigger \rightarrow able to trigger on low momentum objects

Planned LHCb Upgrade schedule

The **amount of data and the physics yield from data** recorded by the current LHCb experiment **is limited by its detector, readout technologies and hardware trigger**. The Phase-I & Phase-II Upgrades will allow to collect data at more than x10 higher rate.

Upgrade I: New Upstream Tracker (UT)

- four planes of silicon strip sensors
- higher segmentation in the region surrounding the beam pipe
- electronics located near sensors to allow segmentation & improved signal/noise ratio

Upgrade lb/ll: The Mighty Tracker

- blue-emitting multi clad fibers, read-out with SiPM
- 2.5 long, 250 µm diameter
- high occupancy in the central region → add IT & MT with fine-granularity silicon strip or pixel detectors

Pattern recognition Upstream track T1 T2 T3 Upstream track T1 T2 T3

One of the options for the **inner region of the Mighty Tracker**:

- active sensor → hit finding + digitisation + zero suppression + readout
- high precision \rightarrow pixels 80 x 80 μ m²
- standard HV-CMOS process,
 60 90 V → low production costs
- front-end electronics in HV-CMOS process, embedded inside silicon detector substrate

*For more information go to The Mu3e Experiment and its Pixel Detector poster

