Precision position and timing detectors for CMS

R. del Burgo, L. Caminada, F. Canelli, M. Huwiler, A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Robmann, D. Wolf

Sensor development

• Planar pixel sensors for hybrid modules:

- High production yield
- Large area sensors
- Radiation tolerance \rightarrow Thin sensors
 - 150 µm thickness
- Track density \rightarrow reduced pixel size by factor of six
 - $25 \times 100 \,\mu \text{m}^2$ or $50 \times 50 \,\mu \text{m}^2$ geometry under study
- High efficiency \rightarrow pixel cell design
- Isolation, biasing scheme, layout details
- Extensive tests at high radiation fluences on going to reproduce the conditions at the end of the lifetime of these detectors!

Performance

- Charge induction between pixels (crosstalk) in $25 \times 100 \,\mu m^2$ geometry • Complications in:
 - cluster position reconstruction track reconstruction
 - higher data rates
- Implemented in CMS offline software
- Asymmetrical cluster enlargement
- Cluster Reconstructed Position: • Residual plot

cluster width with respect to the impinging position

25x100 µm² (baseline)

Test and validation of the sensors with the probe-station in our clean-room

• Explore the feasibility of using established CMOS foundries for the production of our specialised pixel planar sensors

- commercial CMOS technology on high resistive silicon substrate
- high volume production
- production on larger 8" and 12" wafers allows wafer to wafer bonding to electronics
- use of multiple implant, polysilicon and metal layers available allows for an optimisation of the pixel cell design with respect to standard planar sensors

Cross-section of a passive sensor across and the metal field plates

8" wafer

TEPX

- defined as the "cluster reconstructed position" "precise simulated position"
- tails due to asymmetrical cluster enlargement • width increase due to charge induction • Mitigation algorithm developed

Measurements of crosstalk

- With direct charge injection
 - various charges injected in a pixel
 - occupancy of that pixel is read
 - threshold defined to be at 50% occupancy
 - read neighbouring pixel occupancy • second threshold (crosstalk threshold) seen

all

- crosstalk value is the ratio of these thresholds
- With an electron beam
 - selecting size-two clusters
 - lowest pixel charge over total charge
 - flat distribution for charge sharing • peak due to crosstalk
 - peak seen only in paired clusters

paired

unpaired

Tracker Endcap PiXel Detector

- •Inner detector of CMS will be upgraded to match the needs of the high luminosity LHC
- •UZH CMS group responsible for designing and building the TEPX detector
 - largest system of the inner tracker
 - 4 disks per end
 - •2 dees per disk
 - •88 modules per dee

Prototype disk ready

• currently testing mechanical properties study thermal properties and cooling of modules and compare TBPX with simulation

Timing

- •LGAD (Low Gain Avalanche Detector) sensors are silicon sensors developed for fast timing measurement
- Low doping in the bulk
- Internal amplification achieved by a gain layer
- Uniform electric field
- Small capacitance
- Proven time resolution below 30 ps!

Due to the inter-pad isolation structures standard LGAD have a low fill factor

DC contact

• AC-LGAD, fabricated at FBK

(Trento, Italy), propose to solve the problem

• Prototype module produced • tests on-going •1400 modules will be

assembled at PSI and tested in UZH!

- Segmented readout pads • Continuous gain and resistive readout layer
- AC-LGAD have been produced
- Different doping
- Different readout pad pitch and size
- Currently testing the performance in our laboratory!

coupling