The flavour anomalies: SM vs NP

M. Bordone, D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, A. Pattori, S. Trifinopoulos

Physik Institut, Universität Zürich

1) Motivation

Hints of Lepton Flavour Universality Violation in

- $\blacktriangleright b \rightarrow s$ neutral currents: μ vs e
- $\blacktriangleright b \rightarrow c$ charged currents: τ vs light leptons (μ, e)

Two-fold approach:

- ► Standard Model (SM) predictions for the flavour observables
- New Physics (NP) model to address the anomalies

2) Radiative Correction on R_K and R_{K^*}

LFU in $b \to s$ neutral currents is probed via the observables $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K \mu^+ \mu^-)}{\mathcal{B}(B \to K e^+ e^-)} \to \text{essential to estimate their SM errors.}$

Within the SM, we can identify the following sources of LFUV:

- \triangleright kinematics and form factors effects $\sim \frac{m_{\ell}^2}{\sigma^2}$;
- ▶ QED corrections $\sim \frac{\alpha}{\pi} \log(\frac{m_{\ell}^2}{g^2});$
- interplay between the two effects.

In order to have a better understanding of these effects, we performed a semi-analytical calculation of radiative corrections. This allows us to:

- rosscheck the montecarlo PHOTOS (used in the LHCb analysis);
- estimate the residual theory error.

3) Results for the central q^2 bin

In the central bin, defined as $q^2 \in [1, 6]$ GeV², we find:

- \blacktriangleright the J/Ψ resonance does not **affect** the distribution;
- ► QED corrections can in principle be **sizeable**; however, the kinematical cuts applied in the experimental analysis reduce their size;
- leading effect well described by PHOTOS.

Our result for the exp. measured quantity is [1]

$$R_{K^*}[1, 6]^{SM} = 1.00 \pm 0.01$$

4) Results for the low q^2 bin

The low q^2 bin, where $q^2 \in [0.045, 1.1]$ GeV², is of great importance since NP effects can be different compared to the central bin.

This bin is accessible only for $R_{K^*} \to K^*$ a vector particle.

Two main effects:

- kinematic effects are **non universal** for electrons and muons and they may cause distortions,
- \triangleright light-quark resonances (η, f_0, \cdots) provide **non-bremsstrahlung** terms not included in PHOTOS.

As a benchmark, we estimate the effect in the η case, finding a 2% shift for R_{K^*} , leading to the prediction [1]:

$$R_{K^*}[0.045, 1.1]^{SM} = 0.91 \pm 0.02_{QED} \pm 0.02_{FF}$$

Concluding remarks:

- ▶ The SM predictions for the universality ratios $R_{\kappa^{(*)}}$ are solid.
- ► The status of experimental data points to NP.

5) Effective Field Theory approach for NP

A combined solution to the anomalies is provided by an Effective Field Theory (EFT) based on few assumptions [2, 3]:

- ▶ NP only in **left-handed** operators,
- ▶ the leading NP effects arise in the **3rd generation** of quarks and leptons only,
- \triangleright the couplings to light generations are controlled by a $U(2)_q \times U(2)_\ell$ **flavour symmetry** minimally broken $[\rightarrow link to the SM Yukawa coupl.]$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{\Lambda^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T (\bar{Q}_L^i \gamma^{\mu} T^a Q_L^j) (\bar{L}_L^{\alpha} \gamma_{\mu} T^a L_L^{\beta}) + C_S (\bar{Q}_L^i \gamma^{\mu} Q_L^j) (\bar{L}_L^{\alpha} \gamma_{\mu} L_L^{\beta}) \right]$$

The free parameters of \mathcal{L}_{eff} are C_T , C_S , λ_{ij}^q and $\lambda_{\alpha\beta}^\ell$. However, there are non-trivial constraints coming from electroweak precision tests, flavour observables and high- p_T data.

6) Fit of the EFT parameters to data

- ► We get an excellent fit to **both** anomalies.
- ► The constraints from flavour observables, electroweak precision tests and high- p_T data are **fulfilled** without introducing fine tuning.
- ▶ The effective scale Λ of NP is of the order $\Lambda \sim 1.5$ TeV.

7) From EFT to simplified models

Only few new mediators can generate this EFT:

 U_1 and U_3 ,

Vector Leptoquark

- Scalar Leptoquark S_1 and S_3 ,
- ightharpoonup Colorless vector B'and W'.

Among them, only the vector leptoquark U_1 requires no tuning.

Concluding remarks:

- ▶ No contradiction between LFU anomalies and constraints from electroweak precision tests, flavour observables, or $high-p_T$ data.
- ► A TeV-scale vector leptoquark is a very good candidate to explain the anomalies.

References

- [1] M. Bordone, G. Isidori, and A. Pattori, "On the Standard Model predictions for R_K and R_{K^*} ," Eur. Phys. J. C76 no. 8, (2016) 440, arXiv:1605.07633 [hep-ph].
- [2] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, "B-physics anomalies: a guide to combined explanations," *JHEP* **11** (2017) 044, arXiv:1706.07808 [hep-ph].
- [3] M. Bordone, G. Isidori, and S. Trifinopoulos, "Semileptonic B-physics anomalies: A general EFT analysis within $U(2)^n$ flavor symmetry," Phys. Rev. **D96** no. 1, (2017) 015038, arXiv:1702.07238 [hep-ph].