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1) Motivation

Hints of Lepton Flavour Universality Violation in
I b→ s neutral currents: µ vs e
I b→ c charged currents: τ vs light leptons (µ, e)
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EFT-type considerations

Recent data show some convincing evidences of Lepton Flavor Universality  
violations 

b → c charged currents: τ vs. light leptons (μ, e)  [RD, RD*]

b → s neutral currents: μ vs. e [RK, RK*  (+ P5 et al.) ] 
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All effects well described by NP only 
in b→sμμ and (& not in ee)

LH structure on the quark side
largely favored

Helicity structure on the lepton side 
less clear
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Two-fold approach:
I Standard Model (SM) predictions for the flavour observables
I New Physics (NP) model to address the anomalies

2) Radiative Correction on RK and RK∗

LFU in b→ s neutral currents is probed via the observables

RK(∗) = B(B→Kµ+µ−)

B(B→Ke+e−)
→ essential to estimate their SM errors.

Within the SM, we can identify the following sources of LFUV:

I kinematics and form factors effects ∼ m2
`

q2 ;

I QED corrections ∼ α
π log(m

2
`

q2 );

I interplay between the two effects.

In order to have a better understanding of these effects, we performed a
semi-analytical calculation of radiative corrections. This allows

us to:
I crosscheck the montecarlo PHOTOS (used in the LHCb analysis);

I estimate the residual theory error.

3) Results for the central q2 bin

In the central bin, defined as q2 ∈ [1, 6] GeV2, we find:

I the J/Ψ resonance does not
affect the distribution;

I QED corrections can in
principle be sizeable; however,
the kinematical cuts applied in
the experimental analysis
reduce their size;

I leading effect well described
by PHOTOS.

Our result for the exp. measured quantity is [1]

RK∗[1, 6]SM = 1.00± 0.01

4) Results for the low q2 bin

The low q2 bin, where q2 ∈ [0.045, 1.1] GeV2, is of great importance since
NP effects can be different compared to the central bin.
This bin is accessible only for RK∗ [→ K∗ a vector particle].

Two main effects:
I kinematic effects are non universal for electrons and muons and they

may cause distortions,
I light-quark resonances (η, f0, · · · ) provide non-bremsstrahlung terms

not included in PHOTOS.

As a benchmark, we estimate the effect in the η case, finding a 2% shift for
RK∗, leading to the prediction [1]:

RK∗[0.045, 1.1]SM = 0.91± 0.02QED ± 0.02FF

Concluding remarks:
I The SM predictions for the universality ratios RK(∗) are solid.
I The status of experimental data points to NP.

5) Effective Field Theory approach for NP

A combined solution to the anomalies is provided by an Effective Field
Theory (EFT) based on few assumptions [2, 3]:

I NP only in left-handed operators,

I the leading NP effects arise in the 3rd generation of quarks and leptons
only,

I the couplings to light generations are controlled by a U(2)q × U(2)`
flavour symmetry minimally broken [→ link to the SM Yukawa coupl.]

Leff = LSM −
1

Λ2λ
q
ijλ

`
αβ

[
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]
The free parameters of Leff are CT , CS, λqij and λ`αβ. However, there are
non-trivial constraints coming from electroweak precision tests, flavour
observables and high-pT data.

6) Fit of the EFT parameters to data

I We get an excellent fit to both anomalies.

I The constraints from flavour observables, electroweak precision tests and
high-pT data are fulfilled without introducing fine tuning.

I The effective scale Λ of NP is of the order Λ ∼ 1.5 TeV.

7) From EFT to simplified models

Only few new mediators
can generate this EFT:
I Vector Leptoquark
U1 and U3,

I Scalar Leptoquark
S1 and S3,

I Colorless vector B′

and W ′.

Among them, only the
vector leptoquark U1

requires no tuning.

Concluding remarks:
I No contradiction between LFU anomalies and constraints

from electroweak precision tests, flavour observables, or
high-pT data.

I A TeV-scale vector leptoquark is a very good candidate to
explain the anomalies.
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