CAARMA: Computer Aided Ample Range Magnetic Apparatus

to study force-regulated processes at cellular and tissue-level.

L.Selvaggi, L.Pasakarnis, D.Brunner, C. Aegerter

1. Portable magnetic-tweezers device;

2. Microscope-adaptable design;

3. Hundreds of pN, static or pulsed, constant force on micron-sized beads at distance in excess of 100µm from the magnetic tip;

4. Horizontal force, without modifications of the hosting microscope;

5. Use of any objective lens, from immersion up to long working distance;

6. Remanent magnetic field erasing;

7. "Push-and-pull" capability;

8. Dedicated PC software and Control Device for image acquisition, bead tracking and control of the electromagnets (in progress).

Force Calibration for 2.8µm Dyna-beads

Microrheology in early-stage fly embryos

1µm beads inside Amnioserosa cells

Acknowledgements

The mean viscosity is: 0.70±0.1 Pa s center 0.78±0.12 Pa s center-periphery 0.79±0.16 Pa s periphery of the embryo.

The interior of the embryo is about three orders of magnitude more viscous than water. The authors would like to thank: Silvio Scherr and the mechanical workshop for the realization of dedicated mechanical parts and Werner Boll for interesting discussion on microscopy.

References

Kollmannsberger, P., Fabry, B. Review of Scientific Instruments, 78, 114301 (2007).

Hosu,B.G.,Jakab,K.,Banki,P.,Toth,F.I.,Forgacs,G. Review of Scinetific Instruments, 74, 9 (2003).

Yang,Y.,Lin,J.,Meschewski,R.Watson,E.,Valentine,M.T. Reports, 51 (11), 29 (2011).

Doubrovinskia,K.,Swana,M.,Polyakova,O.,Wieschausa,E .F. PNAS, 114, 1051(2017).

Wessel,A.D.,Gumalla,M.,Grosshans,J.,Schmidt,C.F. Biophys. J., 108, 1899 (2015).