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Landscape of topological phases: a key feature of topological states is the existence of protected boundary modes, which can 
emerge from different types of topology.  What kind of phases can appear when we add correlations in electronic crystalline systems?

Interacting (topological) quantum matter

Quantum Matter Theory Group, Prof. Titus Neupert 
                                        

We study crystalline materials, where interactions between the degrees of freedom cannot be treated perturbatively. We tackle these 
complex systems using analytical methods, such as topology and group theory, and numerical techniques.

Symmetry protected  
topological states (SPT)

Gapped (Single GS) 
No exotic excitations

String order parameters, 
Partial symmetry operation…

Topological order

Fractionalised excitations

being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B!0. Hence, from the point of view of CFs, the
!!1/2 state appears equivalent to the case for electrons
at B!0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the !!1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B!0 (see Fig. 18).

The difference between !!1/3 and !!1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.

There are many fascinating open questions associated
with the !!1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor !!i"1/q with quantized Hall
resistances RH!h/(ve2) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm2/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, . . . and 2/3, 3/5, 4/7, 5/9, . . .
(i.e., !!p/(2p"1), p!2,3,4 . . . ) around !!1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at !!1/2 resembles a system of
electrons of the same density at B!0. What happens as
the magnetic field deviates from B!0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around !!1/2 follow the same route. As
the magnetic field deviates from exactly !!1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at !!p/(2p"1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around !!1/2 closely resemble the oscillating features
in R around B!0 and, once they have been shifted from
B!0 to !!1/2, they coincide with their position. This is
very remarkable in several ways.

CFs ‘‘survive’’ the additional (effective) magnetic field
(away from !!1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B!0. The CFs remain
‘‘good’’ particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer

FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, !!p/(2p"1), con-
verges toward !!1/2 and is discussed in the text.
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Example: Fractional 
quantum Hall effect
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The Hubbard square is our example of building block for 2-MALs. The ground state at 
t2<t1 is disconnected from any non-interacting ground state with time reversal symmetry.

The two-particle Green’s function 
distinguishes the two cases!
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Wycko↵ position of multiplicity m, where a = 1, . . . , m.
The set of Wannier orbitals placed on the site at xa must
transform under a representation ⇢ of its site-symmetry
group Gxa .

With these notions, we define ĉ†
r,↵

(ĉr,↵) as the cre-
ation (annihilation) operator of an electron placed at the
unit cell r and created (annihilated) in the single-particle
state of an orbital whose quantum numbers are described
by the compactified index ↵ = (W, a, ⇢, i). For an orbital
located at xa, W indicates the label of the Wycko↵ po-
sition of the site at xa, a = 1, . . . , m specifies at which
xa the electron is placed, ⇢ labels the representation of
Gxa of the orbital, and i = 1, · · · , dim(⇢) enumerates the
various orbitals placed at xa.

Non-interacting ALs are constructed as Slater deter-
minants of exponentially localized single-electron states
ĉr,↵, viz.

|ALi =
Y

r

Y

↵2occ.

ĉ†

r,↵
|0i, (1)

with ↵ ranging over the occupied orbitals in each unit
cell. In some instances, we may refer to n-ALs as states
of the form (1) where each creation operator in (1) is
replaced by a product of n creation operators with dif-
ferent quantum numbers. A state is called topological if
it is not possible to define exponentially localized Wan-
nier orbitals compatible with the space group, such that
the decomposition (1) holds. An elementary example are
Chern bands in 2D. Therefore, in TQC, non-trivial topol-
ogy refers to an obstruction in going from a filled band
description in momentum space to a real space descrip-
tion in terms of localized orbitals.

We now introduce n-MALs, which are quantum many-
body states of several electrons that are also exponen-
tially localized, but may not be adiabatically connected
to a single Slater determinant, or single reference state
in quantum chemistry terms, without the breaking of a
relevant spatial symmetry. The n-MALs are obtained
by placing localized interacting clusters of electrons on
(maximal) Wycko↵ positions of the crystalline lattice, in
analogy with the construction of ALs. Hence, the wave
function of an n-MAL is

|n-MALi =
Y

r

Y

⇠2occ.

Ô†

r,⇠
|0i, (2)

where each Ô†

r,⇠
is now a n-particle “cluster” operator,

consisting of linear combinations of products of n single-
particle operators creating electrons centered at the unit
cell with lattice vector r, and the index ⇠ ranges over the
n-particle operators that are occupied in the unti cell.

To get an insight on the fundamental distinctions be-
tween ALs and n-MALs, note that TRS constrains all
n-MALs to transform as real-valued 1D irreps of the
site-symmetry group of their site, leaving ±1 as possi-
ble eigenvalues for any spatial symmetry. Conversely,
TRS single Slater determinant states always transform
with eigenvalue +1: They are composed of products of

Kramers pairs of electrons which contribute complex con-
jugate eigenvalues � and �?, such that ��? = +1 is
the symmetry eigenvalue of the whole pair [49]. Hence,
n-MALs of type (2) are characterized by transformation
rules under symmetry action that in principle can be dis-
tinct from the set of all the possible representation real-
ized by TRS ALs.

Some of the states described by (2) can be adiabatically
connected to ALs, while others form an adiabatically dis-
connected class of states. With the iTQC framework, we
aim to identify these classes by means of the Green’s
function band representation, as we will discuss later.

Some prominent examples of n-MALs are (i) valence
bond states [51], (ii) coupled cluster wave functions [38]
(iii) cluster Mott insulators with star of David order, as
shown in this work.

B. 2-MALs

In practice, in the present work we will specialize to
the case n = 2. In the following, we denote 2-MALs
as MALs for compactness of notation, unless otherwise
stated, and maintain the label n-MALs for the general
case.

A MAL can be in general written as

|MALi =
Y

r,⇠

Ô†

r,⇠
|0i, Ô†

r,⇠
=

X

↵,�,u

M ⇠

↵�uĉ†

r,↵
ĉ†

r+u,�
, (3)

where the coe�cients M ⇠

↵�u are constrained by TRS and
the spatial crystalline symmetries of the relevant space
group, and ⇠ labels the type of MAL cluster operator.
We assume that distinct cluster operators do not over-
lap, and therefore Ô†

r,⇠
commute pairwise [52]. In Eq. 3,

we introduce the lattice vector u to take into account
the spatial separation between pairs of electrons. In mo-
mentum space, the MAL operator depends on a single
momentum q, and reads

Ô†

q,⇠
=

1
p

N

X

r

e�iq·rÔ†

r,⇠

=
1

p
N

X

k,↵,�,u

ei(�k+q)·uM ⇠

↵�uĉ†

k,↵
ĉ†

�k+q,�
.

(4)

Note that the definition in Eq. (3) also includes ALs with
an even number of electrons. The MAL operators trans-
form under two-particle representations ⇢ of the space
group G. We discuss the explicit form of ⇢ and how to
systematically construct MAL operators compatible with
a certain space group G in App. A.

As an explicit example of MALs, we consider a 1D lat-
tice. Depending on the spatial embedding in a 3D sys-
tem, the 1D system may be considered in the presence
of mirror symmetry or inversion symmetry (I) [53], and
in the following we only focus on the latter. Let us con-
sider the case of Wycko↵ position 2c, which has two-fold
multiplicity, equipped with a Kramers pair of orbitals
(Fig. 3). We denote the creation operator at the unit cell
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bond states [51], (ii) coupled cluster wave functions [38]
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B. 2-MALs

In practice, in the present work we will specialize to
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as MALs for compactness of notation, unless otherwise
stated, and maintain the label n-MALs for the general
case.
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lap, and therefore Ô†
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Note that the definition in Eq. (3) also includes ALs with
an even number of electrons. The MAL operators trans-
form under two-particle representations ⇢ of the space
group G. We discuss the explicit form of ⇢ and how to
systematically construct MAL operators compatible with
a certain space group G in App. A.

As an explicit example of MALs, we consider a 1D lat-
tice. Depending on the spatial embedding in a 3D sys-
tem, the 1D system may be considered in the presence
of mirror symmetry or inversion symmetry (I) [53], and
in the following we only focus on the latter. Let us con-
sider the case of Wycko↵ position 2c, which has two-fold
multiplicity, equipped with a Kramers pair of orbitals
(Fig. 3). We denote the creation operator at the unit cell

The n-MAL states belong to the symmetry-protected crystalline phases
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group G. We discuss the explicit form of ⇢ and how to
systematically construct MAL operators compatible with
a certain space group G in App. A.

As an explicit example of MALs, we consider a 1D lat-
tice. Depending on the spatial embedding in a 3D sys-
tem, the 1D system may be considered in the presence
of mirror symmetry or inversion symmetry (I) [63], and
in the following we only focus on the latter. Let us con-
sider the case of Wycko↵ position 2c, which has two-fold
multiplicity, equipped with a Kramers pair of orbitals
(Fig. 4). We denote the creation operator at the unit cell
coordinate r = 0, · · · L � 1 as ĉ†

r,a,�
, where � 2 {", #} is

the spin, and a 2 {1, 2} labels the two 2c sites [64]. The
antiunitary TRS acts as

T ĉ†

r,a,�
T

�1 = i
X

�0=",#

�(2)

�0� ĉ†

r,a,�0 , (5)

where we denote with �(i), i = 1, 2, 3 the three Pauli
matrices, and inversion acts as

I ĉ†

r,a,�
I

�1 =
X

a0=1,2

�(1)

a0aĉ†

�r,a0,�, (6)

where we understand r mod L. An example of a two-
electron cluster operator, constructed out of the available
single-electron creation operators, is

Ô†

r,MAL
=

1
p

2
(ĉ†

r,1,"
ĉ†

r,1,#
� ĉ†

r,2,"
ĉ†

r,2,#
) (7)

which obeys

IÔ†

r,MAL
I

�1 = �Ô†

�r,MAL
. (8)

The operator in Eq. (8) creates a two-electron cluster
that transforms with inversion eigenvalue (�1), when we
choose r = 0 as inversion center. It is easy to prove that
the ground state

|MALi =
L�1Y

r=0

Ô†

r,MAL
|0i (9)

cannot be connected adiabatically to any 2-AL ground
state: For odd L, it has inversion eigenvalue (�1), while
any TRS AL state has inversion eigenvalue (+1) [53]. As
no TRS AL behaves the same way at the same filling, the
state in Eq. (9) has to be considered as a representative
of a distinct phase.

C. MALs and SPTs

We now discuss how MALs realize SPT phases. Crys-
talline SPTs and pgSPTs [43–47] are SPT phases whose
protecting symmetries are crystalline space group or
point group symmetries, which act as internal onsite op-
erations on portions of the unit cell, called ‘blocks’ in this
context [65]. A block b of the unit cell is left invariant un-
der a subset of the point group, Gb ⇢ G, i.e., elements of
Gb act as on-site or internal symmetries on the block. Let

a b

�2

�2

�2�1

1a

1b2c

4d

FIG. 2. Crystalline SPTs. a Classification of 0D-block
cSPTs in a C4 symmetric unit cell with TRS T 2 = +1. b
Illustration of the action of a partial symmetry operation ap-
plied to a subsystem in the square lattice. The pink region
indicates the subsystem and the blue lines indicate the new
lattice connections after the partial C4 rotation is applied to
the subsystem.

us first recall a few properties of the pgSPTs, following
Ref. [43]. A possible construction scheme for such phases
consists in decorating di↵erent db-dimensional unit cell
blocks b (db = 0, 1, 2 for 3D systems) with db-dimensional
SPTs. In Ref. [43], Eq. (1) defines the ‘block states’ as

| i =
O

b2B

| bi , (10)

where each factor | bi corresponds to an SPT wavefunc-
tion in db-dimensions defined on block b, whose protect-
ing symmetry belongs to Gb. For the case of a 0D-block,
one says that | bi has a ‘Gb charge’, meaning that it
transforms under a 1D Gb irrep, and di↵erent irreps cor-
respond to distinguished 0D-block SPTs. The classifica-
tions of pgSPTs with point group G in d-dimensions and
bosonic degrees of freedom are provided by the cobordism
classification, and can be decomposed as follows (Eq. (2)
in Ref. [43])

C(G) = C0(G) ⇥ · · · ⇥ Cd�1(G), (11)

where Cdb(G) is the classification of SPTs built only out
of db blocks. For fermionic degree of freedom the fac-
torization of Eq. (11) does not hold, a fact that we can
ignore in this work, as we argue below.

From Eqs. (3) and (10), we see that MALs are 0D-block
state cSPTs. Our interest here are TRS fermionic MALs
that conserve particle number. Particle number conser-
vation U(1) and TRS T thus have to be imposed in ad-
dition to the symmetry G. MALs have even fermion par-
ity, otherwise they would not have a unique TRS ground
state. Therefore, time-reversal T

2 = (�1)F = +1 (F be-
ing the fermion parity) is represented as in bosonic states.
MALs thus follow the bosonic C0(G) classification, sup-
plemented by the TRS constraint and particle number
conservation. The relevant symmetry group for classify-
ing the 0D-block SPTs is thus G0 = (U(1)oZTF

4
)/ZF

2
⇥

G̃, where G̃ is the unitary onsite-symmetry of the block,
and ZF

2
the fermion parity. For concreteness, we exem-

plify this for the case G̃ = Z2 with generator S that
could originate from mirror, two-fold rotation or inver-
sion symmetry and contrast it to G̃ = Z1. Table I lists

: n-particle operators

Which other states can be realised 
with crystalline symmetries?

Interacting topological quantum chemistry is a theoretical framework to identify 
interacting short-ranged states. We define a class of trial wavefunctions, the n-Mott atomic 
limits (n-MALs), and we classify them with the n-particle Green’s function

Fractional Chern insulators 
realise the physics of the 
fractional quantum Hall effect in 
lattice systems, and they are an 
example of topological order in 
crystalline systems. Recently, 
this has been experimentally 
observed in ‘twisted bilayer’ 
materials. 

Experiment measures a fractionally quantised resistance. 
[Park et al., Nature, 2023]

Electrons hop with 
amplitude t2,t1, and 
interact through the 
Hubbard interaction.
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C4=-1 eigenstate

t2>t1 : C4|GS =+|GS⟩ ⟩ t2<t1 : C4|GS = |GS⟩ − ⟩
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Charge-4e superconductivity is a 
phase where electron ‘quartets’ 
condense into a superfluid, instead of 
Cooper pairs. We propose an 
attractive Hubbard model where this 
phase appears as a ground state
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If topological, this phase may lead to novel superconducting SPT phases!

lo
ng

sh
or

t
0

The topology of non-interacting electronic crystals has been studied extensively, and has 
lead to the prediction and discovery of many intriguing phases of matter. 
One of the theories used to analyse crystals is the one of “topological quantum chemistry”, 
which relies on the existence of a band structure, and non-interacting reference states. 
How can these theory be adapted once we include interactions? 
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