# Evidences for Lepton Flavour Universality Violation at LHCb LHCCD



I. Bezshyiko, A. Buonaura E. Graverini, P. Owen, N. Serra



## 1) The Standard Model

- ► The Standard Model (SM) is a quantum field theory, self-consistent, weakly coupled up to  $10^{10}$  GeV.
- ► Can explain (almost) all microscopic phenomena with great precision.
- ► Three main experimental problems still need to be explained:
  - Neutrino masses (seen from neutrino oscillations)
  - Baryon Asymmetry in the Universe (BAU)
  - Presence of Non-baryonic Dark Matter
- Quarks and leptons are divided in
- three families. ► The three generations of charged

leptons are:

- each paired with an electrically neutral lepton;
- ordered by the mass of the charged lepton;



## 2) Lepton Flavour Universality

► In the SM, gauge bosons couple to leptons independently of their flavour → Lepton Flavour Universality (LFU)





- $\blacktriangleright$  Branching fractions of  $e, \mu$  and  $\tau$  differ only by phase space and helicity-suppressed contributions
- $\blacktriangleright$  Violation of LFU  $\rightarrow$  hint for New Physics (NP) beyond the SM
- Precision tests of lepton universality performed over many years by many experiments.
- ► No definite violation of LFU observed up to now.

# 3) Why B-mesons?

- Several Beyond Standard Model (BSM) Theories predict stronger couplings of NP to the 3rd families
- Experimental constraints on 3rd generation of quarks and leptons much lower than the others

## 4) The LHCb experiment

- ► The LHCb detector is a single-arm forward spectrometer, covering the polar angle range of  $3^{\circ}$  -  $23^{\circ}$ .
- ► Main selection variables are the B-vertex displacement, the *B*-pointing to the vertex, relatively large  $p_T$  of the daughter particles





- B mesons produced forward in pp inelastic collisions at center of mass energies ranging from  $7 \rightarrow 13 \text{ TeV}$
- So far produced more than  $10^{12}b\bar{b}$  pairs
- ► Produced *B* mesons show small angle to beam and high momentum

## 5) Semileptonic B-decays

- ► In semileptonic *B*-decays the decay products are part leptons and part hadrons
- Charged Current decays mediated by vector boson W (tree level process)



- ► Measurement of semileptonic Branching Ratios (*B*) allows to:
  - ▶ Remove dependence from quark mixing parameter
  - Reduce impact of experimental uncertainties
  - ▶ Partially cancel out theoretical hadronic uncertainties

#### 6) $R_{D^*}$ Measurement at LHCb

$$R_{D^*} = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* l \nu)} = \frac{\text{signal}}{\text{normalization}}$$

- ightharpoonup LHCb uses only the muonic au decay channel
- B-direction inferred from reconstructed pp collision point and secondary  $D^*\mu$  reconstructed vertex



Measured variables used to discriminate between signal, normalisation and backgrounds:  $m_{miss}^2, E_l^*, q^2$ 



#### 7) Conclusions and outlook

- $Arr R_{D^*}(LHCb) = 0.336 \pm 0.027 \pm 0.030$  [1]
- $Arr R_{D^*}(SM) = 0.252 \pm 0.003$  [2]
- Combination of results from LHCb, Belle and BaBar results in a discrepancy from SM of  $\approx$  4  $\sigma$ .



- ► Result might be explained by unknown virtual particles interacting differently with leptons of higher mass (i.e.  $\tau$ ) such as:
  - $\triangleright W'^-$ : new vector boson (spin 1) similar to  $W^-$  but with  $m_{W'} > m_W$  [3]
- ▶ Leptoquarks: particles with electric and colour charges allowing transitions from quarks to leptons and vice versa [3]
- $\triangleright$  Charged Higgs  $H^-$ : scalar (spin 0) which would affect also  $q^2$  and angular distributions [4]
- So far  $q^2$  spectrum and momentum distributions for  $B \to D^* \tau \nu$  consistent with SM predictions
- Efforts to enlarge data samples and to reduce uncertainties in reconstruction efficiencies and background estimates.

## References

- [1] R. Aaij et al., "Measurement of the ratio of branching fractions  $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{ au})/\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$ ," Phys. Rev. Lett., vol. 115, no. 11, p. 111803, 2015.
- [2] S. Fajfer, J. F. Kamenik, and I. Nisandzic, "On the  $B \to D^* \tau \bar{\nu}_{\tau}$  Sensitivity to New Physics," *Phys. Rev.*, vol. D85, p. 094025, 2012.
- [3] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, "B-physics anomalies: a guide to combined explanations," arXiv 1706.07808, 2017.
- [4] A. Crivellin, C. Greub, and A. Kokulu, "Explaining  $B \to D\tau\nu$ ,  $B \to D^*\tau\nu$  and  $B \to \tau\nu$  in a 2HDM of type III," *Phys. Rev.*, vol. D86, p. 054014, 2012.

