Metal-insulator transition in Pr₄Ni₃O₁₀

Shangxiong Huangfu¹, Gawryluk Dariusz Jakub^{3,4}, Xiaofu Zhang¹, Olivier Blacque², Pascal Puphal^{3,4}, Ekaterina Pomjakushina^{3,4}, Andreas Schilling¹

> ¹Physics Department of University Zurich, Winterthurerstrasse 190, 8057 Zurich Switzerland ²Chemistry Department of University Zurich, Winterthurerstrasse 190, 8057 Zurich Switzerland ³Laboratory for Neutron Scattering, ETHZ and PSI, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland ⁴Laborartory for Development and Methods, ETHZ and PSI, Forschungsstrasse 111, 5232 Villigen, PSI Switzerland huangfu@physik.uzh.ch

Rare-earth nickelate Pr₄Ni₃O₁₀

The Ruddlesden–Popper (R-P) rare-earth nickelate $Pr_4Ni_3O_{10}$ is constituted of infinite perovskite-like quasi-2D layered structures. These layers are connected by NiO_6 octahedra via shared vertex oxygen ions, and are separated by rock-salt like layers (PrO) along the crystallographic *c*-axis. There exist two different types of Ni sites, one in the inner perovskite layers, and the other type in the outer perovskite layers.

The single-crystal growth of $Pr_4Ni_3O_{10}$ was performed in an optical-image floating-zone furnace in oxygen atmosphere at 140 bar. The obtained single crystals can be as large as $3.5 \times 2 \times 0.3 \text{ mm}^3$.

Physical properties near the structural phase transition

Resistivity

Zero-field resistivity measurements reveal a distinct anisotropy between the out-of-plane and the in-plane resistivity: a metal-to-metal transition within the *a-b* plane, and a metal-to-

Change of the crystal structure at the structural phase transition at $T_{pt} \sim 157 \text{ K}$

In the low temperature phase, the inner NiO_6 octahedra shrink as compared to that of the high-temperature phase. However, there are no visible differences between these two phases in the outer NiO_6 octahedra. This subtle change of the environment of the inner Ni sites must be responsible for the differences in resistivity and magnetization between the

162 150 152 160 164 158 154 156 Temperature(K)

Magnetization

The magnetization of $Pr_4Ni_3O_{10}$ shows a paramagnetic behavior from 10 to 300 K that can be well fitted by a Curie-Weiss law. The fitted Curie constants are different between the high-temperature and the low-temperature phases. While the low-temperature values can be explained by the magnetic moments of the Pr³⁺ alone, the high-temperature values are compatible with one additional Ni²⁺ in a high-spin configuration.

high-temperature and the low-temperature phases.

Summary We have successfully grown single crystals of $Pr_4Ni_3O_{10}$. The heat capacity data suggest that the structural phase transition at $T_{pt} \sim 157$ K is of first order. A distinct anisotropy between the in-plane and outof-plane resistivity measurements is observed. The magnetization is well fitted by a Curie-Weiss law, with distinctly different Curie constants for the hightemperature and the low-temperature phases.