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Effects of lateral boundaries on traveling-wave dynamics in binary fluid convection
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The global dynamics of traveling-wave patterns in convection in a mixture of ethanol in water is studied in
different cell geometries: circular, rectangular, and stadium-shaped cells. The dynamics in these cells differ
greatly, changing from a globally rotating state in the circular cell, to one large domain of locally parallel
traveling waves in the rectangular cell, to a continually chaotic state in the stadium cell. In all three cases, the
patterns can be described in terms of the phase of the complex order parameter. Disorder in the patterns is
quantified in terms of topological defects in the phase field. While the numbers, net charge, and dynamics of
defects differ greatly in the patterns in the three cells, the local dynamics of the defects, as measured by the
defect-defect correlation functions, are similar.

DOI: 10.1103/PhysRevE.63.046301 PACS number~s!: 47.54.1r, 47.27.Te, 47.52.1j
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I. INTRODUCTION

When a physical system is driven out of thermodynam
equilibrium, it generally undergoes symmetry breaking tra
sitions leading to the formation of a variety of patterns@1#.
Depending on the detailed nature of the system, the patt
at onset may be stationary or show an intrinsic time dep
dence. In this paper we study the dynamics of patterns in
special case of convection in a binary fluid mixture in whi
the patterns at onset consist of traveling waves@2#. It is im-
portant to emphasize, however, that such studies may
address problems in seemingly unrelated nonequilibr
systems that exhibit oscillatory instabilities. Thus, the stud
described here are potentially relevant in such diverse fi
as nonlinear optics in large aspect ratio lasers@3#; population
dynamics in ecology@4# and epidemiology@5#; electric sig-
naling in the heart@6#; chemical waves in reaction-diffusio
systems@7,8#; the magnetic dynamo in the solar plasma@9#;
self-organization in colonies of amoebas@10,11#; and, in
some instances, the dynamics of driven magnetic flux vo
ces in superconductors@12,13#. Study of patterns and dy
namics in convecting fluids has a number of potential adv
tages when the goal is to elucidate the fundamental phys
principles underlying the patterns and dynamics in noneq
librium systems. Convection in pure fluids can be describ
by two dimensionless parameters, the Rayleigh and Pr
numbers, defined by@14#

Ra5
gah3DT

nk
, ~1!

Pr5
n

k
, ~2!

wherea is the thermal expansion coefficient,n is the kine-
matic viscosity,k is the thermal diffusivity,h is the height of
the fluid layer,DT is the imposed temperature differenc
andg is the acceleration due to gravity. From an experim
tal viewpoint, excellent control of the system can
achieved, providing a high degree of repeatability in expe
ments. On the theoretical side, models of fluid dynamics
developed to a high level of sophistication. The Navi
1063-651X/2001/63~4!/046301~12!/$20.00 63 0463
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Stokes equation provides an exact description on which
proximate models can be based. As a consequence, m
fundamental questions in pattern formation have been
addressed in the framework of convection and then sub
quently applied to other situations, such as those of tech
logical relevance.

The influence of boundary conditions on patterns in co
vection has been studied extensively. Mostly these stu
have concentrated on the investigation of convection in p
fluids, in which the patterns are stationary. When the ini
instability is to a stationary pattern, the nature of the bou
ary is very important. In the case of classical Rayleig
Bénard convection, rolls of convection form the stable p
tern, whereas with different boundary conditions imposed
the top plate~e.g., corresponding to an open container! hex-
agonal patterns are observed@14#. Similarly, the thermal
conductivity of the boundary can play an important role,
has been discussed by Clever and Busse@15#, who calculated
the stability balloon for convection with one boundary nea
thermally insulating. They predict that in such a case a p
tern intermediate between rolls and hexagons~‘‘hexarolls’’ !
is stable. Typically, the presence of a lateral boundary
duces finite size effects, which result, for instance, in a sm
change in the critical Rayleigh number@16#. However, in the
case where there is an additional breaking of left-right sy
metry of the convection rolls~e.g., by imposing a global
unidirectional flow in the convecting fluid!, lateral bound-
aries can also be instrumental in determining the pattern
lection @17#.

In the case where the initial instability is oscillatory, an
the patterns at onset consist of traveling waves, theore
investigations of the effects of distant boundaries ha
shown that their presence can substantially alter the natur
the instability, even in one dimension@18,19#. For example,
changes in boundary conditions can change not only
critical value of the control parameter but also the frequen
of the traveling waves at onset. In the work presented h
we report experimental studies of the dynamics of tw
dimensional convection patterns in a binary fluid mixture
ethanol and water in cells of different shapes. For the reg
of parameters studied, convection begins with a subcrit
bifurcation to states of traveling waves. In the tw
©2001 The American Physical Society01-1



en
rn
t

di
ll
a
e
th
pa
t i
cu
th
th
a
a

a
e

.
rw

o
s
m
e

n
g
te
c
o
d
t

o
c
se
a

A
a
re
n

o
es
th

t
ir-
th
t

er

na
g

e
dy
o

bal
the

ing

he
rns
der
s-
to

rder

re,
the
d in

of
orm
r-
do-
i-

e
in
net
ing

ac-
cor-
hin

ted
arly
dy-
d in

II,
n-

in
e
sed.

ults,

m
ds

tem
cou-

r-
ion

he
ed-
n-
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dimensional patterns studied here, not only does the pres
of the lateral boundaries alter the dynamics of the patte
significantly, but their shape does also. This is likely due
the fact that different regions of the boundary can have
ferent, competing effects at a single point within the ce
The curvature of the lateral boundaries may also play
important role in the dynamics. The cell shapes studied h
correspond to different extremes. In the rectangular cell,
curvature of the boundary is zero almost everywhere, a
from very small regions at the corners of the cell, where i
very large. In the stadium-shaped cell, segments of zero
vature are separated by approximately equal lengths wi
constant, nonzero curvature. Finally, in the circular cell
curvature is constant and nonzero along the entire bound
As we describe below, this leads to vastly different glob
dynamics of the patterns in the three cases.

Previous investigations of traveling-wave convection in
circular cell have shown that the patterns evolve to a stat
which the entire pattern rotates@20–22#. In the course of this
self-organization, the pattern evolves to a small number~e.g.,
four or five! domains of locally parallel traveling waves
These domains share sources and sinks of the waves pai
along the boundary, such that the source of one acts as
sink of another, giving the impression of a global rotation
the pattern. This symmetry between sources and sink
traveling waves along the boundary may reflect the sym
try of different points within the cell stemming from th
circular boundary.

We find that this situation is qualitatively different whe
the geometry of the cell boundary is changed. In a rectan
lar cell, sources of traveling waves are almost always loca
at one of the corners of the cell. This is likely due to the fa
that the curvature of the boundary is very large at the c
ners. At lower Rayleigh numbers, close to the saddle no
the dominant source becomes unstable, which leads to
creation of a dominant source in another corner. In the pr
imity of a corner, inhomogeneous flows or mixing may o
cur, which affect the effective local Rayleigh number. Clo
to the saddle node such a change will lead to a signific
alteration of the frequency of the traveling waves@23#. This
can in turn lead to the switching of domains observed.
higher Rayleigh numbers, a source in a corner is stable
dominates the entire pattern. This leads to very well orde
patterns consisting of a single domain with a relatively co
stant and uniform wave number and frequency.

In a stadium-shaped cell, the pattern dynamics are m
chaotic. Globally rotating patterns can be produced in th
cells; however, they are typically unstable. Moreover,
occurrence of a global rotation of the patterns depends on
way in which convection is initiated. In contrast to the c
cular cell, isolated sources do exist on the boundary of
stadium cell, similar to those in the rectangular cell. Due
the relatively small curvature of the boundary, howev
these sources can move along the boundary. This movem
appears to prevent the establishment of a single, domi
domain, in contrast to the patterns observed in the rectan
lar cell. The radius of curvature of the boundary, howev
does not appear to be critical in determining the overall
namics. In experiments in a circular cell with a radius
04630
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curvature equal to that of the stadium-shaped cell, glo
rotation of the pattern is observed to be stable, indicating
importance of the symmetry of the boundary in determin
the dynamics.

Previous experiments in a large circular cell led to t
development of a description of the traveling-wave patte
in terms of topological defects in the phase field of the or
parameter@21,22#. When describing a pattern-forming sy
tem that exhibits an oscillatory instability, it is customary
introduce a complex order parameter@1,25#. It is then pos-
sible to demodulate the amplitude and the phase of this o
parameter~see Sec. III below and Refs.@20,24#!. In the case
of traveling-wave convection in the mixtures studied he
the amplitude of convection is constant over most of
pattern, and thus the details of the pattern are containe
the phase of the order parameter. Since the distribution
wave numbers and frequencies was found to be very unif
within different traveling-wave domains, most of the info
mation concerning the pattern is in the regions near the
main boundaries, which typically consist of lines of topolog
cal defects in the phase field@21#. As a consequence, th
locking of different domains into states of global rotation
the circular cell is accompanied by a saturation of the
topological charge of the phase field at a value correspond
to the number of roll pairs along the boundary. The inter
tions between the defects, as evidenced by their mutual
relations, appears as if it could be a useful framework wit
which to understand this self-organization@22#. In the case
of the rectangular and stadium-shaped cells investiga
here, some of these features remain, while others cle
must be elaborated, as indicated by the different global
namics that is observed. These issues will be discusse
detail below.

This paper is organized in the following way. In Sec.
we describe convection in a binary fluid mixture. We co
centrate on the traveling-wave regime of relevance here
which the Soret effect plays a crucial role. In Sec. III, w
describe the experiment and data analysis procedures u
In Sec. IV we present and discuss the experimental res
and in Sec. V we offer a set of concluding remarks.

II. BINARY FLUID CONVECTION

Convection in mixtures can be qualitatively different fro
that in pure fluids, particularly near onset. The mixture ad
a second diffusive quantity, the concentration, to the sys
besides temperature. Of particular relevance here is the
pling of these two quantities via the Soret effect@26,27#,
which is particularly strong in ethanol-water mixtures. Fo
mally this leads to an additional term in the concentrat
current, which depends on the temperature gradient:

j c52Dc“c1DcStc~12c!“T1uc, ~3!

wherej c is the concentration flux,u is the fluid velocity,Dc
is the concentration diffusivity andSt is the Soret coefficient
@26,27#. Due to the influence of the concentration on t
density of the fluid and hence the buoyancy, there is a fe
back of the temperature gradient on the fluid flow. As me
tioned above, for the mixture studied here, the sign ofSt is
1-2
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EFFECTS OF LATERAL BOUNDARIES ON TRAVELING- . . . PHYSICAL REVIEW E 63 046301
such that the onset of convection occurs as a subcritical H
bifurcation. In this case, the linearly unstable state at on
has a frequency very different from that of the stable c
vecting state to which it evolves. The bifurcation diagram
illustrated in Fig. 1, where the Rayleigh number is given
terms of the critical value for onset in a pure fluid, which
the notation used in the remainder of this paper. As can
seen from Fig. 1, the onset of convection takes place
higher Rayleigh number in the mixture than in a homog
neous fluid. The bifurcation is characterized by the values
the onset Rayleigh numberr co and the saddle noder s . As
the Rayleigh number is increased, the nature of the con
tion asymptotically approaches that in a pure fluid and
comes stationary at a Rayleigh number denoted asr * .

It is convenient to introduce two new dimensionless p
rameters to describe convection in a mixture, the separa
ratio c and the Lewis numberL:

c52c~12c!St

b

a
, ~4!

L5
Dc

k
, ~5!

whereb5r21(]r/]c) is the solutal expansion coefficien
For c, 0, the Soret effect tends to stabilize the fluid lay
against convection. The quantityc is a measure of the driv
ing of convection due to Soret-induced concentration diff
ences relative to that due to thermal expansion. The bifu
tion diagram in Fig. 1 corresponds toc,2L. For the
mixture studied here, of 8% ethanol in water at a mean te
perature of 25 °C,c520.24 @28#. The critical Rayleigh
numbers in the largest circular container studied here
r co51.4 andr s51.23 @20#. The Lewis numberL.0.01, in-
dicating the very slow time scale for the diffusion of conce
tration relative to that for heat, resulting in relatively lon
time scales for the dynamics.

FIG. 1. Bifurcation diagram for binary fluid convection with
negative separation ratio forc,2uLu. Due to the coupling of the
concentration flux to the temperature gradient~via the Soret effect!,
the bifurcation is changed from supercritical, as in a pure fluid~thin
line!, to subcritical~see the text!. Convection begins at a reduce
Rayleigh numberr co , when the temperature difference is increas
and disappears at a saddle node atr s when the Rayleigh number i
decreased. The patterns become stationary at Rayleigh number * .
SOC indicates stationary overturning convection and TW trave
wave.
04630
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III. EXPERIMENT AND ANALYSIS TECHNIQUES

A. Apparatus

The experimental setup is similar to that described in
tail in Ref. @20#. Convection is initiated by applying a tem
perature difference to the layer of the fluid mixture. T
top-plate temperature is controlled by a flow bath. A fil
heater on the bottom plate is connected to a feedback
that controls the temperature difference using the meas
top- and bottom-plate temperatures as inputs. Using this
rangement, a temperature stability of less than 1 mK can
achieved over days, while the temperature difference is u
form over the whole cell to better than 3 mK. Patterns a
visualized using a white-light shadowgraph and recorded
ing a charge-coupled device camera, computer controlled
a general purpose interface bus~GPIB!.

In the experiments described here the height of the c
vection cell was fixed to 4 mm by a set of precision-grou
glass spacers. Four cells with three different shapes w
studied in order to elucidate the differences in the dynam
induced by the boundary geometry: two circular cells, a re
angular cell, and a stadium-shaped cell. To make con
with previous experiments, a circular cell with a radius
11.0 cm and thus an aspect ratio (G5R/h) of 26 was used;
this is the size of the cell used in Refs.@20–22#. The other
shapes were obtained by placing a Teflon insert inside
cell. These inserts had the rectangular and stadium shape
out as shown in Fig. 2. The stadium-shaped insert was u
to bridge the extreme cases of the circular and rectang
shapes. In order to check for a possible dependence of
patterns and their dynamics on cell size, a second circ
cell was studied, with a radius of 5.5 cm~i.e., G513), cor-
responding to that of the curved parts of the stadium-sha
cell.

B. Analysis techniques

In discussions of pattern formation, it is customary to
troduce an order parameter to describe the breaking of sp
symmetry leading to the pattern in question. In the case
traveling-wave convection, the oscillatory nature of the
stability is accounted for by the assumption that the or
parameterA(x,t) is complex. Thus the experimentally dete

,

g

FIG. 2. Boundary shapes used in the present work.~a! Stadium-
shaped cell, with a radius of curvature of the rounded ends of
cm and straight sections of length 8 cm;~b! rectangular cell of
dimensions 11 x 15.5 cm2. In addition, two circular cells were
studied, having radii of 11 cm and 5.5 cm~see the text!. The size of
the larger circular cell is illustrated by the dark borders above. T
height of all cells was 0.4 cm.
1-3
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C. M. AEGERTER AND C. M. SURKO PHYSICAL REVIEW E63 046301
mined shadowgraph intensity, corrected for inhomogenei
in contrast by subtracting and dividing by an image in t
quiescent state, is assumed to be the real part of a com
order parameterA(x,t)

I ~x,t !5Re@A~x,t !#5iA~x,t !icos@f~x,t !#, ~6!

wheref(x,t) is the phase, andiA(x,t)i is the amplitude of
the order parameter. Since the amplitude is found to v
slowly in space and time, it is the spatial and temporal
pendence of the phase that determines the wave vector
frequency of the pattern with

] tf~x,t !5v~x,t !, ~7!

“f~x,t !5k~x,t !. ~8!

In order to determine the phase and amplitude of the o
parameter, we apply an algorithm similar to that employ
by Egolf et al. @29# to determine the wave number in statio
ary patterns in a pure fluid. The key assumption in this ana
sis is that, away from defects in the pattern, the time dep
dence of the shadowgraph intensity is well approximated
a harmonic oscillator, and the phase of the order param
varies much faster than its amplitude or frequency. In t
case, the frequency is well approximated by

v2~x,t !52
] t

2I ~x,t !

I ~x,t !
. ~9!

This assumption is found to be valid for the experimen
patterns studied here, after sufficient filtering to remove n
linearities in the response of the shadowgraph. The phas
the order parameter is obtained using the measured
quency and the harmonic assumption as

f~x,t !5tan21S ] tI ~x,t !

v~x,t !I ~x,t ! D , ~10!

and the amplitude of the order parameter is given by

iA~x,t !i5F I 2~x,t !1S ] tI ~x,t !

v~x,t ! D 2G1/2

. ~11!

Other properties of the pattern, such as the wave num
uk(x,t)u, the wave-vector directionn(x,t)5k(x,t)/k(x,t),
and the curvature“•n(x,t), can then easily be determine
from the phase.

Shown in Fig. 3 is an example of a demodulated shad
graph image described above, for a traveling-wave stat
the stadium-shaped cell. The raw shadowgraph imag
shown together with the phase, amplitude, frequency, w
number, and wave propagation direction determined fr
the wave vector. As can be seen from the figure, most of
information about the pattern is contained in the phase fi
and this is true for all the experiments conducted to da
irrespective of the particular shape of the cell boundary. T
importance of the phase field was recognized in previ
studies in a circular cell using a different demodulation
04630
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gorithm @20#, demonstrating that this basic result is indepe
dent of the details of the demodulation algorithm.

Previous discussions of the dynamics of traveling-wa
convection have centered on the location and dynamics
topological defects in the phase field@21,22#. These studies
were carried out in a circular container, where the patte
organized into a state with a small number of domains
locally parallel traveling waves separated by lines of top
logical defects. It was found@22,30# that the dynamics of the
patterns could be reduced to a description in terms of ph
defects. As discussed below, this is also found to be the c
in the other cell shapes studied here. Hence we will anal
the patterns by identifying and tracking the topological d
fects in the phase field.

FIG. 3. An analysis of a shadowgraph image for a pattern in
stadium cell using the algorithm described in the text. The ima
was recorded at a Rayleigh number ofr 51.4, after a long transien
period. The scales are indicated in brackets~white,black!. ~a! Raw
shadowgraph image, corrected for inhomogeneities in the shad
graph intensity by subtracting and dividing by an image in the q
escent state;~b! the phase. In~c! the frequencyv is shown, nor-
malized byt21. The wave number, normalized byh21, is shown in
~d!. Finally, ~e! and ~f! show the amplitude of the order paramet
and the direction of the wave vector, respectively.
1-4
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EFFECTS OF LATERAL BOUNDARIES ON TRAVELING- . . . PHYSICAL REVIEW E 63 046301
A topological defect in the phase is a singularity in t
field at which the phase is undefined. This point is the cro
ing of zeros of the real and imaginary parts of the ord
parameter~see Fig. 4!. However, due to the discretized n
ture of the experimentally determined phase fields, this d
nition is an unsuitable basis for a practical algorithm
calculation@22#. Alternatively, a contour integral around an
point in the phase field gives a vanishing value except w
the contour contains a topological defect, in which case,

R fdu5c2p, ~12!

wherec is the topological charge of the defect, which ind
cates the direction of the phase change around the conto
integration. In this paperc.0 (,0) corresponds to phas
increasing in the counterclockwise~clockwise! direction.
The integration of Eq.~12! can readily be discretized, and s
it was used to determine the locations of topological defe
by integrating the experimentally determined phase fi
along a loop around every camera pixel. An example of
results of this procedure is shown in Fig. 5, where the ph
field of Fig. 3 is shown together with the corresponding d
fect map. In the following, we will focus on the dynamic
and statistics of these defects and their relation to the ph
cal patterns observed in the shadowgraph images.

FIG. 4. ~a! Schematic diagram of a topological defect in t
phase field.~b! A similar schematic corresponding to the discre
case. Arrows indicate the path of integration around the pixel c
est to the actual phase defect.

FIG. 5. The phase field determined from the shadowgraph
age of Fig. 3~a!, together with the map of topological defects. T
defects were determined by calculating a contour integral aro
each pixel in the image~see text!. The full circles correspond to
defects of positive topological charge, and open circles are de
of negative charge.
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In the remainder of this paper, time and distance are gi
in units of the thermal diffusion time (t5h2/k5124 s! and
the height of the cell (h54 mm!, respectively.

IV. RESULTS AND DISCUSSION

We first present a brief summary of previous findings
the dynamics of traveling-wave convection in a circular co
tainer @21,22#. This discussion will focus mainly on the de
scription of the dynamics in terms of topological defects
the phase field. In addition, we present recent data obta
in a smaller circular cell in order to study the effects of c
size on the pattern dynamics. This discussion will introdu
many aspects of the phase defect description that are im
tant in an understanding of the patterns and dynamics in
other container shapes studied.

Figure 6 shows the phase field and defect map fo
traveling-wave pattern in a circular cell (G526) using the
demodulation algorithm and defect identification techniqu
described above, after an initial period of self-organizati
The most obvious feature is that all the phase defects on
boundary have the same charge~indicating that the rolls are
traveling in the same angular direction along the edge of
cell!. Four large domains of locally parallel traveling wav
make up the bulk of the pattern. In the center of the c
where the domains overlap, a region of cross-roll instabi
is observed. Apart from a small number of isolated dislo
tions, the domains consist of traveling waves of nearly c
stant wave number and frequency. In addition, lines of
fects divide the different domains, some of which can also
identified with line sinks of traveling waves. Furthermor
the magnitudes of the phase velocity~but not the directions!
in the different domains are very similar. The difference
the direction of the phase velocity is given byu.2p/p,
where p is the number of domains. In the case shown,p
54 so the traveling waves in the different domains prop
gate approximately at right angles.

The fact that the traveling waves in all the domains pro
gate clockwise with respect to the boundary leads to the
pression that the pattern rotates as a whole~where the pattern
rotation is about two times slower than the wave rotatio!.

-

-

d

ts

FIG. 6. The phase field and defect map in a circular cell~see
also Ref.@21#! at r 51.4. Departures from a circular boundary vi
ible in the figure are due to obstructions in the optical path of
shadowgraph. The pattern rotates as a whole~in the clockwise di-
rection!, and so all of the defects at the boundary have the sa
~negative! charge. In the interior of the cell, the boundaries betwe
the domains consist of lines of defects of the opposite charge~in
order to conserve topological charge!. ~See text for details.!
1-5
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FIG. 7. Time evolution of the topologica
charge in the phase field and the number of d
fects in the large~solid! and small~dashed! as-
pect ratio circular containers, illustrating the dy
namics of mature patterns in stable, globa
rotating states. The net topological charge is co
stant and determined by the number of ro
around the circumference of the container. T
total number of defects is larger than the n
charge, reflecting the presence of cross-r
patches in the patterns. The similarity betwe
the dynamics in the large and small aspect ra
containers shows that the dynamics of the p
terns does not depend strongly on the size of
cell.
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Since the sidewalls are thermally insulating, the rolls
oriented perpendicular to the boundary. Thus defects in
phase occur naturally at the boundary, with the sign of
defect charge indicting the direction of motion of the rol
Due to the conservation of topological charge, this arran
ment of rolls constrains the total charge within the pattern
be equal to that along the boundary@22#. This, in turn, leads
to a total net topological charge in the interior of the co
tainer ofC.pG. 74; because every roll ends in a defect
the boundary, and the wave number is well approximated
k5p. Note that the total charge must be an even num
because rolls are created only in pairs.

From these considerations, it can be seen that, for a st
rotating pattern, the dynamics of the phase defects has t
relatively simple. The net chargeC of the phase field must b
constant in time and given by the roll wave number and
circumference of the boundary. The situation for the to
number of defects is less simple. The intersections of dom
boundaries within the cell frequently trigger regions of cro
roll instability which, in the phase defect picture, correspo
to ordered lattices of positive and negative defects. The
ation and destruction of cross-roll patches within the cell c
lead to sizable fluctuations in the number of defects. Ho
ever, in order to have a stable globally rotating state,
extent of such cross-roll patches is limited, and this lead
a limit in the fluctuations in the number of defects. The to
number of defectsN is approximately the total charge an
the number of defects in the central cross-roll patchN5C
1NCR . In the circular cell,^NCR&.C, consistent with a
small region in the center consisting of cross rolls. Assum
that the creation of cross rolls is a random process, a P
sonian distribution is expected, which would indicate th
A^DN CR

2 &.^NCR&.C. This estimate is consistent with th
data in Fig. 7, which shows the time evolution of both t
total number of defectsN and the topological chargeC, in
both the large and the small aspect ratio circular contain
In both cases, the mature states of the patterns rotate
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bally, as illustrated by the constant topological charge. F
thermore, the patterns are well ordered as illustrated by
relatively constant total number of defects as a function
time ~Fig. 7!. In addition, the figure shows that all the maj
features of the dynamics scale with the system size.
different signs of the topological charge in the two cas
indicate our general observation that global rotation
equally probable in both directions. Over many runs,
found an approximately equal distribution of directions.

We now refine the description of the dynamics in t
circular container in terms of the motion of the phase defe
in order to set the stage for a discussion of the dynamic

FIG. 8. Time evolution of the convection pattern in the recta
gular cell, during the creation of a new traveling-wave source in
lower right corner~at r 51.37). The new source evolves to dom
nate the entire pattern within;100t ~see text for details!.
1-6



l
gu-

by
e,
,

b-
f
ll.
gly

EFFECTS OF LATERAL BOUNDARIES ON TRAVELING- . . . PHYSICAL REVIEW E 63 046301
FIG. 9. Time evolution of the topologica
charge and the number of defects in the rectan
lar container. Dashed line,r 51.39, just above
r co ; the pattern is very robust and dominated
a single source in one of the corners. Thick lin
r 51.37; and thin line,r 51.36. In these cases
the ~corner! location of the dominating source
changes with time, and unsteady dynamics is o
served. Also shown in the figure is the width o
the frequency distribution averaged over the ce
When new sources appear, the pattern is stron
perturbed.
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other boundary shapes. One of the dominant features in
patterns~cf. Fig. 6! is the lines of defects that form th
boundaries between domains of traveling waves. Wh
these ‘‘domain boundaries’’ meet the cell boundary, t
‘‘source’’ of one domain of traveling waves coincides with
‘‘sink’’ of the other. In terms of phase defects, a source
traveling waves consists of a location of pair production
defects of opposite charges. A sink in this respect can
treated as a point at which a positive and a negative de
annihilate. However, there is an asymmetry between sou
and sinks in that line sources are observed, while sinks o
only as points. It is the fact that these domain bounda
meet the cell boundary that allows for the constant crea
and annihilation of defect pairs at these points and the ch
separation observed inside the cell and around the bound
This will become important in the other cell geometrie
where sources of traveling waves can appear on the bo
ary spatially separated from sinks. Furthermore, the cro
roll patches in the center of the cell are locations of p
creation and annihilation, which in some circumstances
spawn a new domain of traveling waves and thus also ac
a source. Thus the appearance of sources of traveling wa
whether at the boundary or inside the cell, can deeply af
the statistics of the phase defects. This will turn out to
important in the rectangular and stadium-shaped cells
cussed below.
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A. Rectangular cell

Over large regions of Rayleigh number (r .r co) the dy-
namics of the patterns in the rectangular cell are simpler t
those observed in a circular container. Typically, sources
traveling waves form in the high-curvature regions in t
corners of the rectangular cell, and these sources gene
one dominant domain that fills the entire cell, resulting in
relatively uniform pattern. A pattern similar to this can b
seen in Fig. 8~d!, where a raw shadowgraph image atr
51.37 is shown. The fact that there is one dominant dom
means that there is only one source and one correspon
sink of traveling waves in the pattern. This source is spatia
fixed in one of the corners, while the sink is located in t
opposing corner. Hence the net topological charge in
rectangular cell is typically stable and close to zero, since
defects are created in pairs at the source. There is only a
small number of defects in the interior of the cell, since the
are no competing domains leading to cross-roll patches,
pair-created defects are annihilated in the sink. This can
seen by the dashed curve of Fig. 9, where the temporal e
lutions of the topological charge and the number of defe
are shown. The homogeneity of other parameters is ill
trated by the width of the frequency distribution (A^Dv2&)
across the whole cell. In such a state, isolated occurrence
pair creation~and annihilation! of defects are observed rou
tinely within a homogeneous domain of traveling waves.
1-7
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C. M. AEGERTER AND C. M. SURKO PHYSICAL REVIEW E63 046301
the future, this situation may be useful in studying the co
ditions under which traveling waves are unstable to the p
duction of isolated defects.

At smaller Rayleigh numbers,r s,r ,r co , the dynamics
is less steady. While sources of traveling waves are still
calized in corners of the container, a single source in
corner no longer dominates the pattern~see Fig. 8!. The ef-
fective Rayleigh number changes there, most probably du
the asymmetric proximity to a boundary in the lateral dire
tions at different points close to the corners of the cell@18#.
This may occur via an inhomogeneous mixing or mac
scopic flows, leading to variations in the separation ratio
these locations. Transient regions of convection appea
these corners having very different frequencies of oscillat
@23# as compared with the rest of the pattern. An example
this is illustrated in Fig. 10. When a new source appears,
frequency of the new domain is very close to the Hopf f
quency, observed at the onset of convection. Thus the p
velocity (v5v/k) in these domains is much larger than th
in the rest of the cell. Consequently, the traveling-wave
main belonging to the newly formed source spreads o
much of the cell, while its frequency decreases slow
evolving to the frequency of the stable traveling-wa
branch. At this point the domains present in the cell ha
comparable phase velocities and subsequently coexis
many cases, however, the spreading of the new source is
enough to eliminate any other domain, at which point

FIG. 10. Pattern in the rectangular cell during the creation o
new source in the lower left corner.~a! The frequency field, show-
ing a large frequency difference between the competing doma
The frequency of the new source is close to the Hopf frequen
whereas the established domain is at the stable finite-ampli
traveling-wave frequency. Thus, there are different phase veloc
in the two domains, and the new source invades the cell~see the
text and Fig. 8!. ~b! The amplitude of convection, which is reaso
ably homogeneous across the two domains. Inspection of the p
field ~c! shows that the wave number is different in the two d
mains. Finally,~d! shows the corresponding defect map with d
fects making up the boundary between the two domains.
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cycle can begin again~i.e., with an effectively reduced Ray
leigh number in another corner!. Consistent with this is the
fact that the duration of the observed transients~see Fig. 9!
corresponds to the time it takes for the phase to propa
across the whole cell. This process is illustrated in the ti
evolution shown in Fig. 8. Unfortunately, due to the ve
long time scales in this system, collecting enough statis
for a proper dynamical systems analysis of this switch
phenomenon and reconstructing its attractor is impractic

In Fig. 9 the defect statistics for two runs at lower Ra
leigh numbers (r 51.37 andr 51.36) are also shown. Th
appearance of new sources can clearly be seen in the
dependence of the width of the frequency distribution.
times when new sources appear, the frequency width
creases significantly due to the high frequencies introdu
via the new source. Following the transient associated w
such a switch in the dominant source, the frequency wi
returns to its previous smaller and constant value.

As was the case in the circular cell, the dynamics can
described in terms of the statistics of the phase defects.
is illustrated in Fig. 9. At high Rayleigh number, the n
topological charge is constant and zero, and the numbe
defects in the cell is small and constant. There is a sin
stable dominating source on the boundary, consistent w
the net topological charge. The absence of cross-roll patc
is indicated by the~small! total number of defects. The fac
that stable sources can be located in the corners is most p
ably due to the very high curvature of the boundary in c
ners, which is zero elsewhere. In the stadium-shaped cell
situation is different. Stable, spatially localized sources
not observed. Unstable sources do, however, appear a
the boundary.

Now we turn to the more active dynamics observed
lower Rayleigh number~e.g., atr 51.37) in the rectangular
cell. In Fig. 9, the topological charge is constant during p
riods in which the pattern is stable and dominated by a sin
source or coexisting sources. The value of the charge
pends on the distribution of the sources along the bound
and the locations of domain walls. However, when n
sources appear, there is a change in the topological charg
a comparatively short time scale, corresponding to that of
high frequency transients described above. In Fig. 9,
is most clearly seen in ther 51.37 data~thick line! at t
.210t, where the charge changes fromC.20 toC.210. In
this case, the change in topological charge is large beca
sources in corners opposite each other compete for do
nance. In addition, the resulting counterpropagating wa
create regions of instability and hence a large increase in
number of defects in cross-roll patches. However, during
other change in the dominating source~e.g.,t.100t), there
is no significant increase in the total number of defec
There is, however, a pronounced change in the net topol
cal charge, since neighboring corners are switching and
quently a single line of defects divides the resulting domai
Similarly, the dynamics of the run atr 51.36 ~thin line! is
reflected in the time evolution of the defect statistics. T
appearance of new sources can be inferred from change
the net topological charge of the pattern and also increase
the width of the frequency distribution. New sources appe
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EFFECTS OF LATERAL BOUNDARIES ON TRAVELING- . . . PHYSICAL REVIEW E 63 046301
ing in the corner opposite the dominant one are also mar
by an increase in the total number of defects, due to
appearance of cross rolls at the boundary between the
mains.

B. Stadium-shaped cell

The patterns in the stadium-shaped cell are more com
cated than those in the rectangular cell. The boundary of
stadium cell is in some sense intermediate between thos
the rectangular and the circular cells, and the patterns ex
features reminiscent of both geometries. At high Rayle
numbers (r .r co), global rotation of the pattern does occ
but does not appear to be stable. While small fluctuati
typically do not destroy a globally rotating state and oft
damp out, large fluctuations or changes in the initial con
tions can lead to dynamics which, even for very long tim
~e.g., up to 1 week!, do not settle into a well defined stat
This is illustrated in Fig. 11, where a snapshot of such a

FIG. 11. Snapshot of the evolution of a pattern in the stadiu
shaped cell atr 51.37. In contrast to the one shown in Fig. 5, th
pattern does not rotate globally. This can also be seen in the d
bution of topological charge around the boundary~see text!.
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is shown together with the corresponding defect map. T
figure can be compared to another run shown in Fig. 5
which the system is in a globally rotating state. As was
case in the rectangular cell, global rotation of the pattern
absent in the presence of a source of traveling waves a
cell boundary. In contrast to the rectangular cell, howev
the pattern in the stadium-shaped cell is not dominated b
single domain. Furthermore, a source at the boundary is t
cally not stationary in the stadium cell as it is in the recta
gular cell, but moves along the curved parts of the bound
This is plausible since the curvature is constant along
part of the cell, indicating a kind of symmetry betwee
points there.

As was the case in the circular cell, the globally rotati
states that are observed in the stadium cell can be desc
using the time evolution of the total number of defects in t
pattern and the net topological charge. Again the charge
side the pattern matches that along the boundary and is
stant in time. Furthermore, the value of the topologic
charge reflects the length of the circumference of the
~i.e., the number of defects is equal to the circumference
units of the cell height!. This is illustrated in Fig. 12, where
the thin line shows a globally rotating state in the oval cell
r 51.4. This state was obtained by increasing the Rayle
number from below onset to a value where the pattern
stationary. In this case, the pattern can be prepared with
a small number of defects. Then the Rayleigh number w
decreased slowly to the traveling-wave regime, at wh
point the pattern begins to rotate. Once this state was
tained, the Rayleigh number was further decreased tow
the saddle node.

In a state of global rotation, the total number of defects
the cell shows similar statistical properties to that in the c
cular cell, withA^DN CR

2 &.^NCR&.C, whereC.56 corre-
sponding to the length of the boundary of the cell. As t
Rayleigh number is decreased, small fluctuations can lea
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ri-
f
ge
a
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d

e

FIG. 12. Temporal evolution of the number o
defects in the pattern and the topological char
in the stadium-shaped cell. The thin line shows
run atr 51.4. The same pattern was then taken
a lower Rayleigh number,r 51.37, as shown by
the thick line. A run with another initial condi-
tion, but also atr 51.37, is shown by the dashe
curve. Whereas the pattern atr 51.4 rotates glo-
bally, the situation is more complicated at th
other two Rayleigh numbers.
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C. M. AEGERTER AND C. M. SURKO PHYSICAL REVIEW E63 046301
departures from the rotating state, which in the stadium
is less stable than in a circular container. Given a se
initial conditions leading to global rotation, however, su
fluctuations are typically damped out. Small fluctuations
more common at lower Rayleigh numbers, and thus in
regime the pattern does not achieve astable rotating state.
This can be seen in the thick line in Fig. 12, which shows
time evolution of the total number of defects and the top
logical charge for a pattern atr 51.37~i.e., a state reached b
slowly reducing the Rayleigh number after the system is i
state of stationary convection!. Earlier stages of this run gav
rise to the dynamics shown by the thin line in Fig. 12~i.e., a
globally rotating state!. At r 51.37 global rotation is not
stable, but the pattern remains close to a state characte
by a constant net topological charge, the magnitude of wh
is still set by the length of the boundary. Figure 12 a
shows a marked difference in the total number of defe
between this state and the pattern at high Rayleigh num
Sources of traveling waves now exist along the bounda
and so the pattern is dominated by a smaller number of
mains leading to a reduction in the total number of defe
inside the cell. It is only when sources appear within the c
that a significant change in the number of defects is
served, which may, in turn, lead to the development of
main boundaries, and hence to a change in the global dyn
ics of the pattern. This is a mechanism by which,
instance, global rotation can be reachieved for short per
of time ~e.g., aroundt5300t in the thick line in Fig. 12!.

Such changes can also be seen in the dashed curve o
12, which presents another run atr 51.37 with different ini-
tial conditions, far away from a rotating state. Att<50t, a
source inside the cell disappears, leading to a reduction in
number of defects. The appearance of sources of trave
waves along the boundary is again illustrated well by
changes in the topological charge of the pattern~e.g., att
.180t, 250t, and 330t in the dashed curve!. In contrast to
the sources in the rectangular cell, however, those in the
cell may move along the boundary. Motion of these sour
with respect to the sinks leads to gradual changes in
topological charge~e.g., Fig. 12, dashed curve, 100t,t
,180t).

The correlation between changes in the topological cha
and the number of defects is less pronounced in the stad
shaped cell than in the rectangular cell. Increases in the n
ber of defects in the stadium cell are due mainly to the
pearance of sources of traveling waves within the cell. Th
sources subsequently influence only the global state of
pattern and hence the topological charge, as discussed a
However, the appearance of new sources along the boun
can still lead to an increase in the total number of defe
depending on the existence and location of a source wi
the cell beforehand. In case a source exists along the bo
ary beforehand, a competition between the domains co
sponding to the sources will set in. This will lead to th
creation of cross-roll patches and hence an increase in
number of defects in the pattern. In general, combining
information in the net topological charge with the number
defects allows a reasonably accurate description of the
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namics of the patterns, even in the complicated states oc
ring in the stadium cell.

C. Interaction of defects

Since most of the dynamics of the patterns can be
scribed within the framework of topological defects in th
phase field, it is interesting to further investigate their pro
erties. As was done in Ref.@22#, we have calculated the
defect-defect correlation functions of both like and opp
sitely charged defects, which provide information about
mutual defect interaction potentials. The correlation fun
tions are determined using the defect positions determi
by the procedure described in Sec. III B:

Cpp~x,y!5
1

Npp
(

mÞn
d (xn2xm),xd (yn2ym),ydcn ,cm

,

~13!

Cnp~x,y!5
1

Npn
(

mÞn
d (xn2xm),xd (yn2ym),ydcn ,2cm

,

wheredx,y is the Kronecker delta function~which is 1 for
x5y and zero otherwise‘! and (xn ,yn) and cn are the Car-
tesian coordinates and the charge of thenth defect. The sum
is over all defect pairs, and the correlation functions are n
malized to the total number of defects. We average o
many frames to obtain good statistics.

The information obtained from the correlation functio
can be used to provide a crude interaction potential; ho
ever, by definition, it reflects only the probability of findin
another defect~of like or opposite charge! at a specified dis-
tance away. Thus the structure of the correlation function
dominated by specific arrangements of defects in the patt
In particular, cross-roll patches, with their well defined inte
defect distances, give rise to sharp peaks in the correla
functions, which can dominate their overall appearance.
this reason, we calculated a conditional defect-defect co
lation function in which defects located in cross-roll patch
were excluded. We used a criterion to decide whethe
given defect is part of a cross-roll patch, as described in R
@22#. In particular, if the number of defects~of any charge!
within a radius of 2h of a given defect exceeds 6, it i
deemed to be part of a cross-roll patch and is excluded~in an
ideal cross-roll patch, the number of such defects would
12!. Figure 13 shows the conditional correlation functio
for the four different cells studied, where bothCpp andCnp
have been azimuthally averaged. As can be seen from
figure, the general characteristics of the correlation functi
are the same for all boundary shapes. Figure 13~a! shows the
correlation function for like-sign defects. Peaks in corre
tion ath, 2h, and 3h are still visible, in spite of the fact tha
defects in cross-roll patches have been excluded from
analysis. These peaks are due to the presence of the lin
like-sign defects between domains of traveling waves. In z
per boundaries, for example, the distance between defec
h, whereas in perpendicular boundaries it is 2h. Ignoring the
collective interactions that give rise to these effects, we
that there is a very strong repulsion of like-sign defects
1-10
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EFFECTS OF LATERAL BOUNDARIES ON TRAVELING- . . . PHYSICAL REVIEW E 63 046301
short distances, as well as a small attractive force betw
defects at larger distances. Note also the increase in cor
tion with decreasing system size.

In Fig. 13~b!, the correlation function for oppositel
charged defects is shown. In contrast to the case for like-
defects, the correlation function continues to increase
small distances. This indicates a short-range attraction of
positely charged defects. The dip inCnp present at;1.5h
indicates the existence of a small potential barrier in the
teraction between defects. At shorter distances, the inte
tion is strongly attractive, and defects come together
annihilate. At larger distances the interaction is slightly
pulsive.

In order to understand the dependence ofCnp andCpp on
the size of the container indicated above, we have resc
the correlation functions by the square root of the respec
areas of the different convection cells. As can be seen in
14~a!, this scaling works well for the correlations of like-sig
defects. This is probably due to the fact that most of
defects of the same sign are arranged in lines correspon
to the domain boundaries. Thus in the normalization of
correlation functions@i.e., Eq. 13!#, the number of pairs of
defects contributing toCnp and Cpp at short distances is

FIG. 13. The conditional correlation functionsCpp for like-sign
defects~a!; and Cnp for opposite-sign defects~b!. Full line, large
aspect ratio circular container; long-dashed line, stadium-sha
cell; short-dashed line, rectangular cell; long-short-dashed l
small aspect ratio circular container. For defects of the same s
the correlation function goes to zero for small values of separa
of defects, indicating a repulsive interaction at short distances.
oppositely charged defects, the correlation function increases
small separation, indicating an attractive potential.
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overcounted. In contrast, the correlations between oppos
charged defects do not obey this scaling as precisely, as
be seen in Fig. 14~b!. While the general trend of decreasin
correlations with increasing system size is still observed
Cnp , the lack of exact scaling may indicate a slight diffe
ence in the interactions of unlike-sign defects in differe
containers. Alternatively, the different total number a
charge of defects in the various containers could result i
different statistical sampling ofCnp .

V. CONCLUSIONS

We have presented a study of the dynamics of traveli
wave convection in large aspect ratio containers. It is fou
that there is a strong dependence of the global dynamic
the shape of the lateral boundary. In a circular container,
pattern evolves to a stable state, composed of several
mains of locally parallel traveling waves, and exhibits glob
rotation, apparently irrespective of the size of the system
contrast, the dynamics in a rectangular cell is dominated b
single domain of traveling waves originating in one corner
the cell. For Rayleigh numbers close to the saddle node,
dominance of a particular corner changes with time, and
speculate that this is due to a change in effective Rayle
number close to the corners. This in turn is likely to be d
to the close presence of two boundaries at these points

ed
e,
n,
n
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FIG. 14. Rescaled correlation functions for~a! like-sign defects
Cpp , and~b! opposite-sign defectsCnp . The data are the same as
Fig. 13, but scaled by multiplying by the square root of the late
convection cell area. The same notations are used. For defec
the same sign, this rescaling works well. For oppositely char
defects, the scaling is not as good~see text for details!.
1-11



e
dy
di
d

th
s
n

io
ica
ke
a

ts
ac
v
n
e
an
g
th
r
te

ac-
po-
ion

of
gn
an

rac-
the
ga-
-
the
on-
for
ed

-
ed
ted
E-
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can influence the properties of the instability@19,18#. Quali-
tatively similar behavior is observed in a stadium-shap
cell; however, due to the curvature in the boundary, the
namics of the patterns in the stadium cell is somewhat
ferent. Sources appearing at the boundary are not confine
specific locations but move continually. Depending on
value of the Rayleigh number and on the initial condition
globally rotating states may be observed, but they are
stable at long times.

We have shown that these different dynamical behav
can be described in terms of the dynamics of topolog
defects in the phase of the complex order parameter. A
insight gained from this picture is the fact that topologic
charge is conserved, which leads to a balance of defec
the boundary and within the cell. A rotating state is char
terized by a constant net charge on the boundary, achie
by the presence of lines of defects located in domain bou
aries in the interior of the cell. Sources of traveling wav
can be identified as locations of pair creation of defects,
the time evolution of the number of defects and the topolo
cal charge can be used as a simplified description of
dynamics of the patterns. This general description of patte
in terms of phase defects still holds for the more complica
dynamics observed in the stadium-shaped cell.
y

te

l

o-

A

ie

04630
d
-

f-
to

e
,
ot

rs
l
y

l
at
-
ed
d-
s
d

i-
e

ns
d

Finally, we have investigated thelocal interactions be-
tween both like-sign and opposite-sign defects. The inter
tions are similar in all the cell shapes studied here. Op
sitely charged defects exhibit an attractive interact
potential, but have a small potential barrier at distances
the order of the height of the fluid layer. In contrast, like-si
defects exhibit a short-range repulsive potential, which c
be approximated by a hard-core potential, and a small att
tive interaction at larger distances. These findings for
correlation functions are consistent with previous investi
tions in a circular cell@22# and indicate that the local inter
actions between defects do not vary with the shape of
container boundary. Thus there appear to be additional n
local and/or collective interactions that are responsible
the very different global dynamics of the patterns observ
in the different cells.
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