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Abstract

We study the magnetic flux landscape in YBa,Cu3;O7_, thin films as a two dimensional
rough surface. The vortex density in the superconductor forms a self-affine structure in both
space and time. It is characterized by a roughness exponent & = 0.76(3) and a growth exponent
p = 0.57(6). The roughening is caused by flux avalanches in a self-organized critical state,
which is formed in the vortex matter of the superconductor. We discuss our results in the
context of other roughening systems in the presence of quenched disorder.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When a type II superconductor is put in a slowly ramped external magnetic field,
vortices start to penetrate the sample from its edges. These vortices get pinned by
dislocations or other crystallographic defects, leading to the build-up of a flux
gradient, which is only marginally stable, as is the slope of a slowly grown pile of
sand [1]. Thus, it can happen that small changes in the applied field can lead to large
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rearrangements of flux in the sample, known as flux avalanches [2]. Due to the
analogy of the flux landscape with a pile of sand, the properties of flux avalanches
were previously studied in the context of self-organized criticality (SOC) [3], which
predicts that many slowly driven non-equilibrium systems have avalanches which are
distributed according to a power-law [4]. As a matter of fact, vortex avalanches in
superconductors are thought of as an ideal experimental system in which to study
SOC, due to the over-damped dynamics of the vortices [2,5]. In the past, power-law
distributed avalanches have been observed in a number of controlled experiments,
which were ascribed to SOC [6]. Furthermore, the microscopic dynamics of the
particles (vortices) is well known [7] and the collective dynamics can then be for
instance studied in detail using molecular dynamics simulations [8]. In more detail
however, SOC predicts that a system not only shows power-law behaviour, but that
it organizes into a critical state, and should thus show finite-size scaling in the
distribution of avalanches as well [9]. This has now also recently been shown for the
flux-avalanches in a thin film of YBa;Cu3;O7_, (YBCO) [10], where also the shape of
the flux avalanches and their fractal dimension was characterized. The shape and
distribution of avalanches moreover strongly influence the shape of the magnetic flux
landscape, leading to a rough, self-affine surface [11]. The characteristic exponents of
this surface can then be obtained quantitatively from the avalanche properties via a
set of scaling relations derived by Paczuski et al. for many SOC models [12]. The
(numerical) values obtained can be compared with a direct measurement of the
growth and roughness exponents.

Here, we study the roughening properties of the magnetic flux landscape in a thin
film of YBCO in two dimensions (2D). While dynamic roughening has been
experimentally studied in many 1D systems [13—15], among which there was also a
study of the front of penetrating flux in YBCO [16,17], 2D characterization of
roughening systems are rare in the experimental literature [18]. A full 2D
characterization of the roughness properties makes it possible to compare properties
of the avalanches with those of the surface, in order to have a stringent test for SOC
in the flux avalanches in YBCO [10]. Furthermore, we compare the roughness results
with numerical integrations of the Edwards—Wilkinson (EW) equation [19] in the
presence of quenched disorder in order to have a comparison with the static pinning
in the experiment.

Section 2 describes the experimental setup in detail, while Section 3 introduces the
analysis methods for a 2D surface, which are applied to the data. In Section 4, we
present the results of the numerical studies of the quenched EW equation, before
turning to the roughness of the flux landscape in Section 5. These roughness results
will finally be compared with the avalanche properties, determined elsewhere [10], in
Section 6.

2. Experimental setup

The magnetic flux density B: just above the YBCO thin film is measured by means
of the Faraday-effect [20] in an advanced magneto-optical microscope [21]. In this
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setup, the polarization rotation angle is measured directly by means of a lock-in
technique. The YBCO films studied here were grown on a NdGaOs; substrate to a
thickness of 80 nm using pulsed laser ablation [22]. Pinning sites in the sample consist
mostly of screw dislocations and are distributed uniformly over the sample, acting as
point pins [23].

The sample is cooled in zero applied field to 4.2 K, after which the field is slowly
increased in steps of 50 uT, where at each field the sample is allowed to relax for 10s
before an image is taken with a high resolution charge coupled device camera
(782 x 582 pixels) measuring the flux density B.(x,y) with a resolution of 1.4 pm per
pixel. In each experiment, 300 such field steps are taken leading to a magnetic flux
landscape as shown in Fig. 1. In the analysis, only the last 140 images of each run
were used in order to have a flux landscape spanning more than 140 um, such that a
constant area of 140 x 140 pm? can be studied. The results below come from a total
of five such experiments on the same sample.

3. Analysis methods

As can be seen from Fig. 1, the magnetic flux surface, B.(x,y), has an average
profile, (B.(x)),, with high values near the sample edge and zero magnetic flux inside
the sample, where (-), denotes an average over the subscript s. In order to only study
the properties of the fluctuations in the surface, this average profile is subtracted
from the data, such that the properties of b(x,y) = B.(x,y) — (B(x)), are studied in
the following. Furthermore, the time evolution of the flux landscape is investigated
by choosing the area which is studied to start at the mean position of the front of
penetrating flux (indicated by the white line in Fig. 1) and going backwards towards

Fig. 1. The magnetic flux surface at an applied field of 12mT in the YBCO thin film. As can be seen, when
the flux density B. is plotted as height, a shape reminiscent of a pile is obtained, which has a rough surface.
The self-affine properties of the fluctuations around the mean surface are analysed.
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the sample edge for 140 um. In this way a stationary state is mimicked where the
height of the flux landscape is approximately constant in time. The level of the flux
front is chosen to be about three times the standard deviation of the noise in the
Meissner phase, such that an accurate determination is possible.

The roughness of an interface is classically quantified via a determination of the
width of the interface, as given by the second moment, w(¢, L) of the fluctuations
around the mean interface [24]. For a roughening system characterized by a self-
affine structure in space and time, the width increases with time as a power-law,
w(t) o tP, with the growth exponent . At long times, after the correlation length has
reached the system size, L, the width saturates at a value wy, (L) oc L*, depending
again as a power-law on the system size (see e.g. Ref. [24]). Here, o is called
the roughness exponent. In experiments, it is often more useful to determine the
characteristic exponents from the correlation functions rather than from the
interface width [25]. The correlation function, in 2D, is given by

Crx,p,t) = (W& +x,1+ 3,1+ 1) — h(E D) ) e e - (1)

In contrast to the width, the correlation function is obtained averaging over more
points, leading to a more reliable estimate. The characteristic exponents can still be
determined from the correlation function, since for a self-affine structure the scaling
behaviour is as that of the width, i.e., C(r,0) oc ¥* and C(0, 1) o< t* [24]. Here, r =
v/x% + »? is the radial distance in the plane.

Experimental noise in the apparatus (e.g. photon counting noise) may hamper the
determination of the correlation function, such that power-law behaviour is lost at
small scales. In our experiment, the flux surface b(x,y) is in fact determined by
contributions from both the ideal flux surface, A(x,y) and experimental noise,
predominantly due to photon counting noise, &(x,y). Inserting a height fluctuation
with an added noise component, b(x, y) = i(x, y) + &(x, y) into the definition of the
correlation function, one finds that the behaviour for the ideal fluctuations can still
be obtained from the data, as long as the properties of the noise are known:

Ci(x, 3, 1) = Cp(x,3,1) = 20°(x, ) . 2

Here o(x, y) is the strength of the noise as given by (e(&, 7)e(E + x, 7 + y))é’/nz. Thus, in

the case of white noise, ¢ is independent of x and y. In our system, we can
experimentally determine the properties of the noise, such that a correction for the
noise according to Eq. (2) and hence a proper determination of the exponents is
possible [26].

4. Numerical simulations

In order to study the influence of quenched disorder, analogous to the static point
pins in the superconductor, on the roughening properties of the flux surface, we also
carried out numerical simulations of the two dimensional EW equation in the
presence of static disorder. The EW equation describes the height of an interface,
h(x, y, t), as a function of time, which is pulled though a disordered medium with a
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speed v. In the experimental case, the driving can be seen as the increasing applied
magnetic field H,..,. In this case, the roughening of the interface is due to the
disorder, n(x,y,t), which is usually considered to have a white spectrum in both
space and time. Furthermore, there is an elastic term, which leads to the smoothing
of the surface [19], leading to

o AR
R GO

In the case of a white spectrum of the disorder, the equation can be solved exactly
and in one dimension a self-affine interface is obtained, whereas in two dimensions
roughening is only marginal [24]. However, in the presence of a combination of
quenched and dynamic disorder, the equation can no longer be solved analytically
and numerical simulations show roughness also in 2D [27]. Here, we have
numerically integrated the EW equation on a lattice of 128 x 128 pixels with
periodic boundary conditions. In order to have both quenched and dynamic disorder
in the model, we split the disorder term in Eq. (3) into two components, 7,(x, y) and
n4(x,y,1), where n, is constant in time and represents the quenched part of the
disorder and 7, has a white spectrum in time and represents the dynamic disorder. In
the presence of quenched disorder we speak of the quenched EW equation. Both
disorder terms have a white spectrum in space. The strength of both terms is equal
for the results presented below, however the values of the exponents are very robust
and ratios of 0.5<#,/n,<10 yield the same exponents within the errorbars. The
integration is run for 10000 time steps until the width of the interface saturates and
the full 2D correlation function is determined subsequently in 20 different
simulations. In Fig. 2, the spatial component, C(x,y), is shown in a logarithmic
contour plot. Since the contours are logarithmically spaced, evenly spaced contours
in the plot imply power-law behaviour. The fact that the contours are circularly
shaped on a linear scale, indicates that the system is isotropic as it should be. This
can also be seen by directly fitting a power-law dependence to radial projections of
C(x,y) over the range of r<11 pixels. As can be seen in the inset to Fig. 3, the
roughness exponent, o, does not depend on the radial angle, such that a radial
average, shown in the main part of the figure can be used to obtain a good
determination of «. As can be seen, the correlation function is linear in the log—log
plot over more than a decade with an exponent of « = 0.75(3), indicated by the
straight line.

The temporal behaviour of the quenched EW equation can be characterized by the
growth exponent f. This is determined from the temporal correlation function C(z),
which is shown in Fig. 4 on a double logarithmic scale. There is good power-law
behaviour in the time correlation function, with a growth exponent of f = 0.50(3), as
determined from a linear fit over 100 time steps in the double logarithmic plot.

Thus in the presence of quenched disorder, the roughness properties of the EW
equation change drastically with a strong increase of both the roughness and the
growth exponent (in the absence of static disorder we obtain o>~ >~ 0.1). In
the magnetic flux landscape discussed below, the dynamics is mainly governed by the
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Fig. 2. Double logarithmic plot of the full 2D correlation function of the height fluctuations in the
numerical simulation of the quenched EW equation. The contours are logarithmically spaced, such that
equidistant contours indicate power-law behaviour. Furthermore, on a linear scale the contours are
circular, indicating the isotropic nature of the system in the x- and y-directions (see also the inset of Fig. 3).
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Fig. 3. Radial average of the full 2D correlation function of the height variations of the numerical
simulation of the quenched EW equation. The straight line on the double logarithmic plot indicates power-
law behaviour, where the slope of the curve determines the roughness exponent of « = 0.75(3). The inset
shows the angular dependence of the roughness exponent o, as determined from a fit to different radial
projections of the full 2D correlation function in the range of r< 11 pixels. The values of « are independent
of the radial angle, as it should be for an isotropic system.
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Fig. 4. The time correlation function for the numerical simulation of the quenched EW equation on a
double logarithmic plot. The straight line indicates that the correlation function is a power-law with an
exponent of f# = 0.50(3).

static pinning landscape, such that a model including quenched disorder is necessary
in order to describe the main features of the system. Note also that one of the
standard sandpile models [28], which is used to describe the dynamics of a rice-pile,
has been mapped exactly onto the quenched EW equation [29].

5. Flux landscape

Given the rough landscape shown in Fig. 1, we determine the self-affine properties
of the fluctuations around the mean surface as discussed in Section 3 above. In order
to have a reasonable size for the 2D area used in the analysis, we analyse images
starting from an applied field of SmT and determine the spatial and temporal
correlation functions for the subsequent 128 images. Averaged over these 128 images
and over all experiments, the full 2D correlation function, C(x,y), is shown as a
logarithmic contour plot in Fig. 5. As was the case in Fig. 2 above, the equidistant
contours imply power-law behaviour and circular contours on a linear scale support
the fact that the system is isotropic, such that a radial average may be performed in
order to determine the roughness exponent more precisely. Another indication of the
isotropic nature of the system can be seen in the inset of Fig. 6, where the radial
dependence of the roughness exponent is shown, as determined from a power-law fit
on a scale r<15um. As the figure shows, the roughness exponent does not depend
on the radial angle, which means that a radial average can safely be carried out.
The corresponding radial average, C(r), is shown in the main part of Fig. 6, after a
noise correction as described above [26], on a double logarithmic plot. As can be seen
there is good power-law behaviour over more than one decade with a roughness
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Fig. 5. Contour plot of the full 2D correlation function of the magnetic flux landscape. The contours are
logarithmically spaced, such that equidistant contours imply a power-law dependence. The contours have
a circular shape on a linear scale, which indicates that the system behaves isotropically in the x- and y-
directions (see also inset of Fig. 6).
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Fig. 6. Radial average of the correlation function of the magnetic flux surface. The inset shows the angular
dependence of the roughness exponent ¢, as obtained from a power-law fit to the full 2D correlation
function in the region r< 15 pum. The roughness exponent is independent of the radial angle, implying that
the system is isotropic and that a radial average may be performed in order to determine o.

exponent of o = 0.76(3), indicated by the straight line in the figure. Again, the value
of the exponent is obtained from a linear fit to the data in the double logarithmic plot
in the range of r<15um. The roughness exponent, which is obtained is in good
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Fig. 7. The time correlation function for the magnetic flux surface. The straight line indicates power-law
behaviour, with an exponent of = 0.57(6).

agreement with that from the numerical integration of the quenched EW equation
above.

The temporal behaviour is characterized by the time correlation function of the
height fluctuations. Again, noise in the experimental system distorts the data via an
intrinsic width [26]. After correction for the experimentally determined noise, the
data are plotted in Fig. 7. As can be seen, the correlation function is a power-law
over a decade in time, where the straight line in the figure indicates the exponent of
p = 0.57(6). Here, the exponent was obtained from a linear fit to the double
logarithmic plot over the first 15 time steps. Again, this is in agreement with the
result from the integration of the quenched EW equation.

As mentioned above, the surface roughness is closely connected with the
avalanche behaviour described by SOC [12]. The avalanche properties in our YBCO
sample have been studied before, which allows a detailed quantitative comparison of
the roughness properties with those of the avalanches [10]. This is done in the next
section.

6. Comparison with avalanche properties

It has been noted that the roughness of a surface of a SOC system is created by the
shape and distribution of the avalanches in the system [11]. Thus, there should be a
connection between these two phenomena, which can be tested [12]. Such a
quantitative connection has been previously shown in the properties of the
avalanches and the surface roughness of a three dimensional pile of rice [18]. From
a theoretical point of view, the scaling relations have been derived in the context of
models of extremal dynamics as well as the specific problem of a rice pile surface
[12,18]. When the avalanches have a fractal dimension of D, which can be obtained
from a finite-size scaling analysis of the avalanche size distribution and the active
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area of the avalanches has a fractal dimension of dp, then the roughness exponent is
given by o = D — dp. Using the values previously determined in the same YBCO
samples [10] for the avalanche properties, i.e., D = 1.89(3) and dp = 1.18(5), we
obtain o = 0.71(6). This is in good agreement with the value of o = 0.76(3)
determined above, as well as with the result from our numerical integration of the
quenched EW equation. A similar scaling relation has recently also been shown to be
fulfilled using the roughness of the flux front [17].

The growth exponent can be obtained via the dynamical exponent, z = o/ f3, which
describes the scale dependence of the cross-over time 7., at which the width of the
surface saturates. This is given by z = D(2 — 1), where 7 is the exponent of the
avalanche size distribution. Again using the values from Ref. [10], T = 1.29(2) and
D = 1.89(3), we obtain z = 1.34(4) and hence f# = 0.53(9). This is in good agreement
with the determination from the roughness analysis above, § = 0.57(6), as well as
with the results from the simulations of the quenched EW equation. Thus, not only
can the Oslo-model [28] be mapped onto the quenched EW equation [29], also the
more general scaling relations for SOC models derived by Paczuski et al. [12] can be
checked in a system described by the quenched EW equation. This gives further
support to the connection between SOC and roughening physics [30,31], which has
already been shown for the surface of a pile of rice [18].

7. Conclusions

In conclusion, we have shown that the two dimensional flux surface of an YBCO
thin film in the mixed state is self-affine and shows power-law scaling in its roughness
and growth, given by o = 0.76(3) and S = 0.57(6). This behaviour is in good
agreement with the expectations from a simple roughening system (the EW equation)
in the presence of quenched disorder. In addition, the surface roughness is connected
to the avalanche properties of the magnetic flux jumps, as is expected for a SOC
system. The scaling relations of Paczuski et al. [12], can be used to quantitatively
predict the values of the roughness and growth exponents from the avalanche size
distribution exponent and dimensions. Using an earlier characterization of the
avalanche properties in our sample [10], we obtain good agreement between the
expectation from the scaling relations and the roughness exponents observed here.
This shows that the flux landscape in YBCO is formed by the avalanches of a SOC
process. Also it shows the intimate connection between the roughening of an
interface and avalanche dynamics, or SOC in general [30].
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